324 research outputs found

    Short and random: Modelling the effects of (proto-)neural elongations

    Get PDF
    To understand how neurons and nervous systems first evolved, we need an account of the origins of neural elongations: Why did neural elongations (axons and dendrites) first originate, such that they could become the central component of both neurons and nervous systems? Two contrasting conceptual accounts provide different answers to this question. Braitenberg's vehicles provide the iconic illustration of the dominant input-output (IO) view. Here the basic role of neural elongations is to connect sensors to effectors, both situated at different positions within the body. For this function, neural elongations are thought of as comparatively long and specific connections, which require an articulated body involving substantial developmental processes to build. Internal coordination (IC) models stress a different function for early nervous systems. Here the coordination of activity across extended parts of a multicellular body is held central, in particular for the contractions of (muscle) tissue. An IC perspective allows the hypothesis that the earliest proto-neural elongations could have been functional even when they were initially simple short and random connections, as long as they enhanced the patterning of contractile activity across a multicellular surface. The present computational study provides a proof of concept that such short and random neural elongations can play this role. While an excitable epithelium can generate basic forms of patterning for small body-configurations, adding elongations allows such patterning to scale up to larger bodies. This result supports a new, more gradual evolutionary route towards the origins of the very first full neurons and nervous systems.Comment: 12 pages, 5 figures, Keywords: early nervous systems, neural elongations, nervous system evolution, computational modelling, internal coordinatio

    Modeling spontaneous activity across an excitable epithelium: Support for a coordination scenario of early neural evolution

    Get PDF
    Internal coordination models hold that early nervous systems evolved in the first place to coordinate internal activity at a multicellular level, most notably the use of multicellular contractility as an effector for motility. A recent example of such a model, the skin brain thesis, suggests that excitable epithelia using chemical signaling are a potential candidate as a nervous system precursor.We developed a computational model and a measure for whole body coordination to investigate the coordinative properties of such excitable epithelia. Using this measure we show that excitable epithelia can spontaneously exhibit body-scale patterns of activation. Relevant factors determining the extent of patterning are the noise level for exocytosis, relative body dimensions, and body size. In smaller bodies whole-body coordination emerges from cellular excitability and bidirectional excitatory transmission alone.Our results show that basic internal coordination as proposed by the skin brain thesis could have arisen in this potential nervous system precursor, supporting that this configuration may have played a role as a proto-neural system and requires further investigation

    Frontshear and backshear instabilities of the mean longshore current

    Get PDF
    An analytical model based on Bowen and Holman [1989] is used to prove the existence of instabilities due to the presence of a second extremum of the background vorticity at the front side of the longshore current. The growth rate of the so-called frontshear waves depends primarily upon the frontshear but also upon the backshear and the maximum and the width of the current. Depending on the values of these parameters, either the frontshear or the backshear instabilities may dominate. Both types of waves have a cross-shore extension of the order of the width of the current, but the frontshear modes are localized closer to the coast than are the backshear modes. Moreover, under certain conditions both unstable waves have similar growth rates with close wave numbers and angular frequencies, leading to the possibility of having modulated shear waves in the alongshore direction. Numerical analysis performed on realistic current profiles confirm the behavior anticipated by the analytical model. The theory has been applied to a current profile fitted to data measured during the 1980 Nearshore Sediment Transport Studies experiment at Leadbetter Beach that has an extremum of background vorticity at the front side of the current. In this case and in agreement with field observations, the model predicts instability, whereas the theory based only on backshear instability fai led to do so

    The Gross--Llewellyn Smith Sum Rule in the Analytic Approach to Perturbative QCD

    Get PDF
    We apply analytic perturbation theory to the Gross--Llewellyn Smith sum rule. We study the Q2Q^2 evolution and the renormalization scheme dependence of the analytic three-loop QCD correction to this sum rule, and demonstrate that the results are practically renormalization scheme independent and lead to rather different Q2Q^2 evolution than the standard perturbative correction possesses.Comment: 17 pages, 9 eps figures, REVTe

    Stratus 12 : twelfth setting of the Stratus Ocean Reference Station

    Get PDF
    The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually. A NOAA vessel was not available, so this cruise was conducted on the Melville, operated by the Scripps Institution of Oceanography. During the 2012 cruise on the Melville to the ORS Stratus site, the primary activities were the deployment of the Stratus 12 WHOI surface mooring, recovery of the previous (Stratus 11) WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship, and collection of underway and on station oceanographic data to continue to characterize the upper ocean in the stratus region. Underway CTD (UCTD) profiles were collected along the track. Surface drifters and subsurface floats were also launched along the track.Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA09OAR4320129
    corecore