9 research outputs found

    Application of a genetic algorithm based model selection algorithm for identification of carbide-based hot metal desulfurization

    No full text
    Abstract Sulfur is considered as one of the main impurities in hot metal. Hot metal desulfurization is often carried out with pneumatic injection of a fine-grade desulfurization reagent using a submerged lance. The aim of this study was to develop a data-driven model for the process. The model selection algorithm carries out a simultaneous variable selection and optimization of number of hidden neurons with a combination of binary and integer coded Genetic Algorithm. The objective function applied in the search is repeated Leave-Multiple-Out cross-validation. The model considered is a feedforward neural network with a single hidden layer. In the inner loop of the algorithm, the computational load is reduced by making use of Extreme Learning Machine (ELM) architecture. The final model is trained using the Bayesian regularization. The results show that a well-generalizing data-driven model with good prediction performance can be repeatedly selected based on noisy industrial data with the help of a Genetic Algorithm, provided that the model is validated comprehensively with internal and external data sets

    Vibrations of a laboratory-scale gas-stirred ladle with two eccentric nozzles and multiple sensors

    No full text
    Abstract During ladle stirring, a gas is injected into the steel bath to generate a mixing of the liquid steel. The optimal process control requires a reliable measurement of the stirring intensity, for which the induced ladle wall vibrations have proved to be a potential indicator. An experimental cold water ladle with two eccentric nozzles and eight mono-axial accelerometers was thus investigated to measure the vibrations. The effect of the sensors’ positions with respect to the gas plugs on the vibration intensity was analyzed, and experimental data on several points of the ladle were collected for future numerical simulations. It is shown that the vibration root-mean-square values depend not only on process parameters, such as gas flow rate, water, and oil heights, but also on the radial and axial positions of the sensors. The vibration intensity is clearly higher, close to the gas plumes, than in the opposite side. If one of the nozzles is clogged, the vibration intensity close to the clogged nozzle drops drastically (−36 to −59%), while the vibrations close to the normal operating nozzle are hardly affected. Based on these results, guidelines are provided for an optimized vibration-based stirring

    Vibration‐based monitoring of gas‐stirring intensity in vacuum tank degassing

    No full text
    Abstract Liquid steel is typically stirred in a vacuum tank using argon gas injection to achieve a homogeneous composition and high‐purity steel. The aim of this work is to study the effect of vessel vibration on the operational state monitoring of the gas stirring in a vacuum tank degasser. Following an extensive analysis of vibration features, the root mean square (RMS) of vertical velocity is found to be the best feature for the measurement of the stirring intensity caused by the volumetric gas injection rate into the ladle. Smoothing is conducted using a centered median filter with a window length of 21 s. In this work, the operational state monitoring of gas stirring is described using a ladle responsiveness value (LRV). This describes the ability of a ladle to generate the maximum amount of vibration with the minimum amount of argon gas. The LRV summarized for each ladle reveals significant differences between them. Correspondingly, a rolling ladle responsiveness value (rLRV) is used for online monitoring of possible gas leakages. The rLRV can also be used for the online monitoring of the stirring efficiency and as its comparison with the overall efficiency of a specific ladle or all ladles

    Genetic architecture of human plasma lipidome and its link to cardiovascular disease

    No full text
    Abstract Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10−8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD

    Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices

    No full text
    Abstract Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10−72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10−4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10−5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids

    New insights into the genetic etiology of Alzheimer’s disease and related dementias

    No full text
    Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    New insights into the genetic etiology of Alzheimer’s disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    Genetic architecture of human plasma lipidome and its link to cardiovascular disease

    No full text

    Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices

    No full text
    corecore