137 research outputs found

    A single-cell method to map higher-order 3D genome organization in thousands of individual cells reveals structural heterogeneity in mouse ES cells

    Get PDF
    In eukaryotes, the nucleus is organized into a three dimensional structure consisting of both local interactions such as those between enhancers and promoters, and long-range higher-order structures such as nuclear bodies. This organization is central to many aspects of nuclear function, including DNA replication, transcription, and cell cycle progression. Nuclear structure intrinsically occurs within single cells; however, measuring such a broad spectrum of 3D DNA interactions on a genome-wide scale and at the single cell level has been a great challenge. To address this, we developed single-cell split-pool recognition of interactions by tag extension (scSPRITE), a new method that enables measurements of genome-wide maps of 3D DNA structure in thousands of individual nuclei. scSPRITE maximizes the number of DNA contacts detected per cell enabling high-resolution genome structure maps within each cells and is easy-to-use and cost-effective. scSPRITE accurately detects chromosome territories, active and inactive compartments, topologically associating domains (TADs), and higher-order structures within single cells. In addition, scSPRITE measures cell-to-cell heterogeneity in genome structure at different levels of resolution and shows that TADs are dynamic units of genome organization that can vary between different cells within a population. scSPRITE will improve our understanding of nuclear architecture and its relationship to nuclear function within an individual nucleus from complex cell types and tissues containing a diverse population of cells

    Lymphoma-Associated Biomarkers Are Increased in Current Smokers in Twin Pairs Discordant for Smoking

    Get PDF
    Smoking is associated with a moderate increased risk of Hodgkin and follicular lymphoma. To understand why, we examined lymphoma-related biomarker levels among 134 smoking and non-smoking twins (67 pairs) ascertained from the Finnish Twin Cohort. Previously collected frozen serum samples were tested for cotinine to validate self-reported smoking history. In total, 27 immune biomarkers were assayed using the Luminex Multiplex platform (R & D Systems). Current and non-current smokers were defined by a serum cotinine concentration of >3.08 ng/mL and ≤3.08 ng/mL, respectively. Associations between biomarkers and smoking were assessed using linear mixed models to estimate beta coefficients and standard errors, adjusting for age, sex and twin pair as a random effect. There were 55 never smokers, 43 current smokers and 36 former smokers. CCL17/TARC, sgp130, haptoglobin, B-cell activating factor (BAFF) and monocyte chemoattractant protein-1 (MCP1) were significantly (p < 0.05) associated with current smoking and correlated with increasing cotinine concentrations (Ptrend < 0.05). The strongest association was observed for CCL17/TARC (Ptrend = 0.0001). Immune biomarker levels were similar in former and never smokers. Current smoking is associated with increased levels of lymphoma-associated biomarkers, suggesting a possible mechanism for the link between smoking and risk of these two B-cell lymphomas

    Lymphoma-Associated Biomarkers Are Increased in Current Smokers in Twin Pairs Discordant for Smoking

    Get PDF
    Smoking is associated with a moderate increased risk of Hodgkin and follicular lymphoma. To understand why, we examined lymphoma-related biomarker levels among 134 smoking and non-smoking twins (67 pairs) ascertained from the Finnish Twin Cohort. Previously collected frozen serum samples were tested for cotinine to validate self-reported smoking history. In total, 27 immune biomarkers were assayed using the Luminex Multiplex platform (R & D Systems). Current and non-current smokers were defined by a serum cotinine concentration of >3.08 ng/mL and ≤3.08 ng/mL, respectively. Associations between biomarkers and smoking were assessed using linear mixed models to estimate beta coefficients and standard errors, adjusting for age, sex and twin pair as a random effect. There were 55 never smokers, 43 current smokers and 36 former smokers. CCL17/TARC, sgp130, haptoglobin, B-cell activating factor (BAFF) and monocyte chemoattractant protein-1 (MCP1) were significantly (p < 0.05) associated with current smoking and correlated with increasing cotinine concentrations (Ptrend < 0.05). The strongest association was observed for CCL17/TARC (Ptrend = 0.0001). Immune biomarker levels were similar in former and never smokers. Current smoking is associated with increased levels of lymphoma-associated biomarkers, suggesting a possible mechanism for the link between smoking and risk of these two B-cell lymphomas

    Impact of the Genome on the Epigenome Is Manifested in DNA Methylation Patterns of Imprinted Regions in Monozygotic and Dizygotic Twins

    Get PDF
    One of the best studied read-outs of epigenetic change is the differential expression of imprinted genes, controlled by differential methylation of imprinted control regions (ICRs). To address the impact of genotype on the epigenome, we performed a detailed study in 128 pairs of monozygotic (MZ) and 128 pairs of dizygotic (DZ) twins, interrogating the DNA methylation status of the ICRs of IGF2, H19, KCNQ1, GNAS and the non-imprinted gene RUNX1. While we found a similar overall pattern of methylation between MZ and DZ twins, we also observed a high degree of variability in individual CpG methylation levels, notably at the H19/IGF2 loci. A degree of methylation plasticity independent of the genome sequence was observed, with both local and regional CpG methylation changes, discordant between MZ and DZ individual pairs. However, concordant gains or losses of methylation, within individual twin pairs were more common in MZ than DZ twin pairs, indicating that de novo and/or maintenance methylation is influenced by the underlying DNA sequence. Specifically, for the first time we showed that the rs10732516 [A] polymorphism, located in a critical CTCF binding site in the H19 ICR locus, is strongly associated with increased hypermethylation of specific CpG sites in the maternal H19 allele. Together, our results highlight the impact of the genome on the epigenome and demonstrate that while DNA methylation states are tightly maintained between genetically identical and related individuals, there remains considerable epigenetic variation that may contribute to disease susceptibility
    • …
    corecore