3,641 research outputs found

    Dynamics of the sol-gel transition in organic-inorganic nanocomposites

    Get PDF
    Two different techniques have been used to follow the gelation of photochromic organic-inorganic nanocomposites. The variations of molecular and macromolecular motions in these complex systems have been analyzed. Photo-correlation spectroscopy probes the formation of the gel network. Forced Rayleigh scattering experiences the microstructure of the mixtures via the measurement of the translational diffusion coefficient of entrapped photoreactive targets. In the different mixtures, a drop of the network mobility could be observed around the sol to gel conversion, while the entrapped molecules do not experience the macroscopic transition

    Photochromic organic-inorganic nanocomposites as holograpahic storage media

    Get PDF
    This paper describes the properties of some new organic-inorganic photochromic layers. They are based on a hybrid organic-inorganic matrix in which tungsten heteropolyoxometallates (SiW12O404-, PW12O403-) are entrapped in a network obtained from the reaction of 3-glycidoxy-propyltrimethoxysilane. The high homogeneity of these materials on the nanoscale leads to transparent monoliths and layers of controlled thicknesses up to 40 µm. The optical properties of the blend are emphasised and the construction of amplitude gratings in the materials by two-wave-mixing experiments is described. The results of the optical experiments and the comparison with the theoretical background are used as a model for photochromic holographic storage processes

    Impact of smoking on health system costs among cancer patients in a retrospective cohort study in Ontario, Canada

    Get PDF
    Objective Smoking is the main modifiable cancer risk factor. The objective of this study was to examine the impact of smoking on health system costs among newly diagnosed adult patients with cancer. Specifically, costs of patients with cancer who were current smokers were compared with those of non-smokers from a publicly funded health system perspective. Methods This population-based cohort study of patients with cancer used administrative databases to identify smokers and non-smokers (1 April 2014-31 March 2016) and their healthcare costs in the 12-24 months following a cancer diagnosis. The health services included were hospitalisations, emergency room visits, drugs, home care services and physician services (from the time of diagnosis onwards). The difference in cost (ie, incremental cost) between patients with cancer who were smokers and those who were non-smokers was estimated using a generalised linear model (with log link and gamma distribution), and adjusted for age, sex, neighbourhood income, rurality, cancer site, cancer stage, geographical region and comorbidities. Results This study identified 3606 smokers and 14 911 non-smokers. Smokers were significantly younger (61 vs 65 years), more likely to be male (53%), lived in poorer neighbourhoods, had more advanced cancer stage,and were more likely to die within 1 year of diagnosis, compared with non-smokers. The regression model revealed that, on average, smokers had significantly higher monthly healthcare costs (5091)thannon−smokers(5091) than non-smokers (4847), p<0.05. Conclusions Smoking status has a significant impact on healthcare costs among patients with cancer. On average, smokers incurred higher healthcare costs than non-smokers. These findings provide a further rationale for efforts to introduce evidence-based smoking cessation programmes as a standard of care for patients with cancer as they have the potential not only to improve patients' outcomes but also to reduce the economic burden of smoking on the healthcare system

    Roll-to-Roll Manufacturing of Micropatterned Adhesives by Template Compression

    Get PDF
    For the next generation of handling systems, reversible adhesion enabled by micropatterned dry adhesives exhibits high potential. The versatility of polymeric micropatterns in handling objects made from various materials has been demonstrated by several groups. However, specimens reported in most studies have been restricted to the laboratory scale. Upscaling the size and quantity of micropatterned adhesives is the next step to enable successful technology transfer. Towards this aim, we introduce a continuous roll-to-roll replication process for fabrication of high-performance, mushroom-shaped micropatterned dry adhesives. The micropatterns were made from UV-curable polyurethane acrylates. To ensure the integrity of the complex structure during the fabrication process, flexible templates were used. The compression between the template and the wet prepolymer coating was investigated to optimize replication results without structural failures, and hence, to improve adhesion. As a result, we obtained micropatterned adhesive tapes, 10 cm in width and several meters in length, with adhesion strength about 250 kPa to glass, suitable for a wide range of applications

    Multilayer NIR reflective coatings on transparent plastic substrates from photopolymerizable nanoparticulate sols

    Get PDF
    A new synthesis and processing route for preparing multilayer interference coatings on plastic substrates has been developed. For this purpose, alcoholic sols of surface modified (3-glycidoxypropyltrimethoxysilane, GPTS) SiO2 and TiO2 particles with sizes of 10 and 4 nm, respectively, were synthesized. Layers were prepared by dip coating, subsequent UV curing (2.1 J/cm(2)) acid thermal post treatment at 80 degrees C for 15 min. Refractive indices of n(D) = 1.47 for SiO2 layers and n(D) = 1.93 for TiO2 were measured. As an example, plastic sheets were coated by angle dependent dip coating with withdrawal speeds from 3 up to 6 mm/s and sin inclination angle of 4 degrees. By this way, one side of the substrate was coated with six quarterwave thick layers (peak wavelength at 750 nm), producing a reflective interference filter with a reflectivity of 72% between 650 and 900 nm. On the other side of the substrate, an interference filter with a reflectivity of 66% between 800 and 1100 nm was produced simultaneously. The interference coatings do nor show delamination or defects after boiling water test (H2O + 5 wt.% NaCl, 8 h) and excellent adhesion (GT 0, TT 1) was obtained in the cross cut tape test. Yellowing did not occur (Delta(g) < 3) and the mechanical properties of the interference filters were not altered after dry sun test at 760 W/m(2) for 270 h. For mechanical protection a nanocomposite hardcoat can be applied on top of the NIR reflectance filters without changing the optical properties remarkably

    Refractive microlens fabrication by ink-jet process

    Get PDF
    Microlenses made of hybrid organic-inorganic materials have been fabricated on glass substrates using a commercial drop-on-demand ink-jet printing system with a 50 ”m diameter nozzle driven by a piezoelectric device. After deposition the drops have been polymerized by UV light irradiation. Viscosity, solvent evaporation, drop-substrate wetting condition and drop and substrate temperatures are the main parameters which govern the production of reproducible lens shapes. The shape and surface roughness of the lenses have been characterized by atomic force microscopy and profilometry. Their optical properties have been determined by light microscopy and spectrophotometric techniques. The printing technique can produce plano-convex spherical microlenses with diameters varying from 50 to 300 ”m, focal lengths from 70 ”m to 3 mm and f-numbers as low as 0.6
    • 

    corecore