200 research outputs found

    Species invasions threaten the antiquity of China's freshwater fish fauna

    Get PDF
    AimHuman-mediated species introductions and extirpations have resulted in the homogenization of biotas over time. However, there remains considerable uncertainty in our understanding of homogenization process for megadiverse regions of the world. Here, we investigate the consequences of widespread species invasions and extirpations for the biogeography of China&#39;s unique freshwater fish fauna. LocationChina. MethodsBy assembling a comprehensive dataset for distribution of Chinese freshwater fishes, we quantify how non-native fish species, from both overseas introductions and domestic translocations, has led to taxonomic homogenization of fish faunas at watershed, basin, ecoregion and country scales. We explore how the observed patterns in homogenization vary geographically, and identify those species most responsible for the faunal changes. Lastly, we simulate how China&#39;s fish fauna may continue to homogenize according to different scenarios of anticipated species introductions and extirpations. ResultsWe demonstrate that species introductions and extirpations have homogenized freshwater fish faunas across China. Overall compositional similarity of watersheds increased by 7.0% (from a historical 14.9% to 21.9% in the present day; SOrensen index). Compositional similarity of 96 of 103 (93.2%) watersheds increased, with western basins exhibiting the highest magnitude. Translocated non-native species associated with aquaculture practices contributed the most to faunal homogenization when compared to alien species (7.3% and 0.4%, respectively). Furthermore, faunal homogenization is predicted to intensify an additional 0.5-4.2% with increasing numbers of new non-native species introductions and the extirpation of native species. Main conclusionsSpecies introductions and extirpations have resulted in the significant impoverishment, and thus the loss of antiquity, of China&#39;s freshwater fish fauna over the past century. In the light of the growing realization that species composition (not richness) defines the role that biodiversity plays in maintaining ecosystem function, our study highlights the need for conservation strategies in China that consider changing patterns of diversity.</p

    Multi-Scale Threat Assessment of Riverine Ecosystems in the Colorado River Basin

    Get PDF
    Freshwater ecosystems are facing a deepening biodiversity crisis. Developing robust indicators to assess ecological integrity across large spatial scales and identifying the specific threats and pathways of impairment are thus critically needed if we are to inform freshwater conservation strategies. Here we present the first comprehensive threat assessment across the Colorado River Basin – one of the largest and most endangered river basins in North America – using a spatial framework accounting for the wide range of human activities (land uses, transportation infrastructure, exploitative activities, water withdrawals), pathways (local footprint, overland runoff, upstream cumulative effects), and spatial extent of influence (valley bottom, catchment and river network) known to affect the ecological integrity of riverine ecosystems. We quantified and mapped 69 individual threat indices with geospatial tools for each permanent, ephemeral, and intermittent stream segment within the Basin, encompassing a total of \u3e1,067,700 river kilometers. We further aggregated these indices into components of water quality (diffuse and point-source pollution), hydrology (flow regulation/uses and climate change), and physical system (connectivity and geomorphology). To demonstrate the potential of our framework to inform spatial planning decision processes, we examined the typical combinations of threats experienced by different hydrologic areas and stream segment types, identified candidate watersheds for habitat restoration and enhancement where hotspots of biodiversity and threat overlapped, and assessed the associations between threat indices and in situ measurements of ecological integrity describing a suite of biological (benthic macroinvertebrate, fish), chemical (total nitrogen load, water conductivity), hydrological (flow alteration) and physical indicators (streambed stability, instream habitat complexity). Our assessment highlights clear disparities in term of overall degree of threat that result from different combinations and contributions of individual stressors, with different priorities emerging for perennial versus intermittent or ephemeral stream segments, and between the upper and lower parts of the Basin. Importantly, we showed that our threat indices were generally correlated with biological, chemical, hydrological and physical indicators of ecological integrity they were intended to capture. In addition to its implications for the conservation and management of the highly imperiled Colorado River Basin, our case study illustrates how multi-faceted threat mapping can be used to assess the ecological integrity of riverine ecosystems in the absence of spatially extensive in situ measurements

    Fish Species Introductions Provide Novel Insights into the Patterns and Drivers of Phylogenetic Structure in Freshwaters

    Get PDF
    Despite long-standing interest of terrestrial ecologists, freshwater ecosystems are a fertile, yet unappreciated, testing ground for applying community phylogenetics to uncover mechanisms of species assembly. We quantify phylogenetic clustering and overdispersion of native and non-native fishes of a large river basin in the American Southwest to test for the mechanisms (environmental filtering versus competitive exclusion) and spatial scales influencing community structure. Contrary to expectations, non-native species were phylogenetically clustered and related to natural environmental conditions, whereas native species were not phylogenetically structured, likely reflecting human-related changes to the basin. The species that are most invasive (in terms of ecological impacts) tended to be the most phylogenetically divergent from natives across watersheds, but not within watersheds, supporting the hypothesis that Darwin\u27s naturalization conundrum is driven by the spatial scale. Phylogenetic distinctiveness may facilitate non-native establishment at regional scales, but environmental filtering restricts local membership to closely related species with physiological tolerances for current environments. By contrast, native species may have been phylogenetically clustered in historical times, but species loss from contemporary populations by anthropogenic activities has likely shaped the phylogenetic signal. Our study implies that fundamental mechanisms of community assembly have changed, with fundamental consequences for the biogeography of both native and non-native species

    Use of Fatty Acid Analysis to Determine Dispersal of Caspian Terns in the Columbia River Basin, U.S.A.

    Get PDF
    Lethal control, which has been used to reduce local abundances of animals in conflict with humans or with endangered species, may not achieve management goals if animal movement is not considered. In populations with emigration and immigration, lethal control may induce compensatory immigration, if the source of attraction remains unchanged. Within the Columbia River Basin (Washington, U.S.A.), avian predators forage at dams because dams tend to reduce rates of emigration of juvenile salmonids (Oncorhynchus spp.), artificially concentrating these prey. We used differences in fatty acid profiles between Caspian Terns (Hydroprogne caspia) at coastal and inland breeding colonies and terns culled by a lethal control program at a mid-Columbia River dam to infer dispersal patterns. We modeled the rate of loss of fatty acid biomarkers, which are fatty acids that can be traced to a single prey species or groups of species, to infer whether and when terns foraging at dams had emigrated from the coast. Nonmetric multidimensional scaling showed that coastal terns had high levels of C20 and C22 monounsaturated fatty acids, whereas fatty acids of inland breeders were high in C18:3n3, C20:4n6, and C22:5n3. Models of the rate of loss of fatty acid showed that approximately 60% of the terns collected at Rock Island Dam were unlikely to have bred successfully at local (inland) sites, suggesting that terns foraging at dams come from an extensive area. Fatty acid biomarkers may provide accurate information about patterns of dispersal in animal populations and may be extremely valuable in cases where populations differ demonstrably in prey base

    Words matter: a systematic review of communication in non-native aquatic species literature

    Get PDF
    How scientists communicate can influence public viewpoints on invasive species. In the scientific litera-ture, some invasion biologists adopt neutral language, while others use more loaded language, for example by emphasizing the devastating impacts of invasive species and outlining consequences for policy and practice. An evaluation of the use of language in the invasion biology literature does not exist, preventing us from understanding which frames are used and whether there are correlations between message framing in scientific papers and local environmental impacts associated with invasive species. Thus, we conducted a systematic literature review of 278 peer-reviewed articles published from 2008-2018 to understand communication styles adopted by social and natural scientists while reporting on aquatic non-native spe-cies research. Species-centered frames (45%) and human-centered frames (55%) were adopted to nearly equal degrees. Negative valence was dominant in that 81.3% of articles highlighted the negative risks and impacts of invasive species. Additionally, the use of terminology was found to broadly align with the stage of invasion, in that "invasive" was most commonly used except when the research was conducted at early stages of invasion, when "non-native" was most commonly used. Terminology use therefore enables readers of scientific papers to infer the status and severity of ongoing invasions. Given that science communication within the peer-reviewed literature affects public understanding of research outcomes, these findings provide an important point of reflection for researchers

    Esociformes: Esocidae, Pikes, and Umbridae (Mudminnows)

    Get PDF
    The order Esociformes (Pikes and Mudminnows) comprises two families, Esocidae (Pikes) and Umbridae (Mudminnows). The Pikes are a small Holarctic (Northern Hemisphere) family, that includes large, elongate predators with duckbill-like snouts full of sharp teeth. Popular with sport fishers, the largest Pikes fight fiercely on hook and line. As piscivorous, voracious, ambush predators, the Pikes play an important functional role in the trophic ecology and fish assemblage structure of many aquatic systems, especially in northern lakes. Other esocids, such as the Olympic Mudminnow, Novumbra hubbsi, and Blackfishes, genus Dallia, are interesting because of their tolerance of low dissolved oxygen and pH. The Alaska Blackfish, Dallia pectoralis, and the Northern Pike, Esox lucius, can also withstand the extremely cold conditions of the Arctic and subarctic waters of Canada, Alaska, and Siberia. The name Esocidae is derived from Linnaeus’s (1758) generic name for Pike, Esox, from the Latin word esox meaning Pike, which came originally from the Greek isox or possibly the Gaelic eog, ehawe (salmon) (Boschung & Mayden 2004)

    Small instream infrastructure: Comparative methods and evidence of environmental and ecological responses

    Get PDF
    1. Around the globe, instream infrastructures such as dams, weirs, and culverts associated with roads are wide‐spread and continue to be constructed. There is limited documentation of smaller infrastructure because of mixed regulation and laws related to instream construction, as well as difficulty in documentation because of their size and frequency in waterscapes. 2. We reviewed evidence of different methods used to quantify environmental and ecological responses (positive, negative, or neutral) to dams, weirs, and culverts. 3. Most studies (78% of 87) in our review evaluated dams or weirs, and more than half evaluated environmental or ecological responses at more than one of these structures. More than half of the studies used spatial (disturbed–undisturbed in the same or a different catchment) rather than temporal (before–after construction or before–after destruction) comparative methods. Evaluations also tended to focus on ecological variables, most specifically on fish community responses (just over a quarter) to infrastructure. 4. More than half (58%) of the evaluations at dams, weirs, or culverts reported negative environmental or ecological responses. Discrepancies in responses recorded for different infrastructure types could be partially explained by the focus on ecological responses in reviewed studies and related metrics used for evaluations (e.g. biotic groups, richness, and abundance), the imbalance of studies at different infrastructure types, and discrepancies in spatial and temporal scales of evaluations compared to those at which the variables respond to infrastructure. 5. Despite the abundance of road culverts greatly exceeding the number of small or large dams worldwide, they were evaluated in only 22% of studies that we reviewed. Our findings underscore the need for studies to not only better understand local but also cumulative impacts of these smaller infrastructure, as these could be greater than those caused by large infrastructure depending on their location, density, and type, among other factors. Such studies are needed to inform infrastructure planning and watershed management
    • 

    corecore