52 research outputs found
Modularity in answer set programs
Answer set programming (ASP) is an approach to rule-based constraint programming allowing flexible knowledge representation in variety of application areas. The declarative nature of ASP is reflected in problem solving. First, a programmer writes down a logic program the answer sets of which correspond to the solutions of the problem. The answer sets of the program are then computed using a special purpose search engine, an ASP solver. The development of efficient ASP solvers has enabled the use of answer set programming in various application domains such as planning, product configuration, computer aided verification, and bioinformatics.
The topic of this thesis is modularity in answer set programming. While modern programming languages typically provide means to exploit modularity in a number of ways to govern the complexity of programs and their development process, relatively little attention has been paid to modularity in ASP. When designing a module architecture for ASP, it is essential to establish full compositionality of the semantics with respect to the module system. A balance is sought between introducing restrictions that guarantee the compositionality of the semantics and enforce a good programming style in ASP, and avoiding restrictions on the module hierarchy for the sake of flexibility of knowledge representation.
To justify a replacement of a module with another, that is, to be able to guarantee that changes made on the level of modules do not alter the semantics of the program when seen as an entity, a notion of equivalence for modules is provided. In close connection with the development of the compositional module architecture, a transformation from verification of equivalence to search for answer sets is developed. The translation-based approach makes it unnecessary to develop a dedicated tool for the equivalence verification task by allowing the direct use of existing ASP solvers.
Translations and transformations between different problems, program classes, and formalisms are another central theme in the thesis. To guarantee efficiency and soundness of the translation-based approach, certain syntactical and semantical properties of transformations are desirable, in terms of translation time, solution correspondence between the original and the transformed problem, and locality/globality of a particular transformation.
In certain cases a more refined notion of minimality than that inherent in ASP can make program encodings more intuitive. Lifschitz' parallel and prioritized circumscription offer a solution in which certain atoms are allowed to vary or to have fixed values while others are falsified as far as possible according to priority classes. In this thesis a linear and faithful transformation embedding parallel and prioritized circumscription into ASP is provided. This enhances the knowledge representation capabilities of answer set programming by allowing the use of existing ASP solvers for computing parallel and prioritized circumscription
Optimizing Phylogenetic Supertrees Using Answer Set Programming
The supertree construction problem is about combining several phylogenetic
trees with possibly conflicting information into a single tree that has all the
leaves of the source trees as its leaves and the relationships between the
leaves are as consistent with the source trees as possible. This leads to an
optimization problem that is computationally challenging and typically
heuristic methods, such as matrix representation with parsimony (MRP), are
used. In this paper we consider the use of answer set programming to solve the
supertree construction problem in terms of two alternative encodings. The first
is based on an existing encoding of trees using substructures known as
quartets, while the other novel encoding captures the relationships present in
trees through direct projections. We use these encodings to compute a
genus-level supertree for the family of cats (Felidae). Furthermore, we compare
our results to recent supertrees obtained by the MRP method.Comment: To appear in Theory and Practice of Logic Programming (TPLP),
Proceedings of ICLP 201
Guided Visual Exploration of Relations in Data Sets
Efficient explorative data analysis systems must take into account both what a user knows and wants to know. This paper proposes a principled framework for interactive visual exploration of relations in data, through views most informative given the user's current knowledge and objectives. The user can input pre-existing knowledge of relations in the data and also formulate specific exploration interests, which are then taken into account in the exploration. The idea is to steer the exploration process towards the interests of the user, instead of showing uninteresting or already known relations. The user's knowledge is modelled by a distribution over data sets parametrised by subsets of rows and columns of data, called tile constraints. We provide a computationally efficient implementation of this concept based on constrained randomisation. Furthermore, we describe a novel dimensionality reduction method for finding the views most informative to the user, which at the limit of no background knowledge and with generic objectives reduces to PCA. We show that the method is suitable for interactive use and is robust to noise, outperforms standard projection pursuit visualisation methods, and gives understandable and useful results in analysis of real-world data. We provide an open-source implementation of the framework.Peer reviewe
- …