30 research outputs found

    Transcript profiling of candidate genes in testis of pigs exhibiting large differences in androstenone levels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Boar taint is an unpleasant odor and flavor of the meat and occurs in a high proportion of uncastrated male pigs. Androstenone, a steroid produced in testis and acting as a sex pheromone regulating reproductive function in female pigs, is one of the main compounds responsible for boar taint. The primary goal of the present investigation was to determine the differential gene expression of selected candidate genes related to levels of androstenone in pigs.</p> <p>Results</p> <p>Altogether 2560 boars from the Norwegian Landrace and Duroc populations were included in this study. Testicle samples from the 192 boars with most extreme high or low levels of androstenone in fat were used for RNA extraction, and 15 candidate genes were selected and analyzed by real-competitive PCR analysis. The genes Cytochrome P450 c17 (<it>CYP17A1</it>), Steroidogenic acute regulatory protein (<it>STAR</it>), Aldo-keto reductase family 1 member C4 (<it>AKR1C4</it>), Short-chain dehydrogenase/reductase family member 4 (<it>DHRS4</it>), Ferritin light polypeptide (<it>FTL</it>), Sulfotransferase family 2A, dehydroepiandrosterone-preferring member 1 (<it>SULT2A1</it>), Cytochrome P450 subfamily XIA polypeptide 1 (<it>CYP11A1</it>), Cytochrome b5 (<it>CYB5A</it>), and 17-beta-Hydroxysteroid dehydrogenase IV (<it>HSD17B4</it>) were all found to be significantly (P < 0.05) up-regulated in high androstenone boars in both Duroc and Landrace. Furthermore, Cytochrome P450 c19A2 (<it>CYP19A2</it>) was down-regulated and progesterone receptor membrane component 1 (<it>PGRMC1</it>) was up-regulated in high-androstenone Duroc boars only, while <it>CYP21 </it>was significantly down-regulated (2.5) in high-androstenone Landrace only. The genes Nuclear Receptor co-activator 4 (<it>NCOA4</it>), Sphingomyrlin phosphodiesterase 1 (<it>SMPD1</it>) and 3β-hydroxysteroid dehydrogenase (<it>HSD3B</it>) were not significantly differentially expressed in any breeds. Additionally, association studies were performed for the genes with one or more detected SNPs. Association between SNP and androstenone level was observed in <it>CYB5A </it>only, suggesting cis-regulation of the differential transcription in this gene.</p> <p>Conclusion</p> <p>A large pig material of highly extreme androstenone levels is investigated. The current study contributes to the knowledge about which genes that is differentially expressed regard to the levels of androstenone in pigs. Results in this paper suggest that several genes are important in the regulation of androstenone level in boars and warrant further evaluation of the above mentioned candidate genes, including analyses in different breeds, identification of causal mutations and possible gene interactions.</p

    Clinical validation of a genetic model to estimate the risk of developing choroidal neovascular age-related macular degeneration

    No full text
    Abstract Predictive tests for estimating the risk of developing late-stage neovascular age-related macular degeneration (AMD) are subject to unique challenges. AMD prevalence increases with age, clinical phenotypes are heterogeneous and control collections are prone to high false-negative rates, as many control subjects are likely to develop disease with advancing age. Risk prediction tests have been presented previously, using up to ten genetic markers and a range of self-reported non-genetic variables such as body mass index (BMI) and smoking history. In order to maximise the accuracy of prediction for mainstream genetic testing, we sought to derive a test comparable in performance to earlier testing models but based purely on genetic markers, which are static through life and not subject to misreporting. We report a multicentre assessment of a larger panel of single nucleotide polymorphisms (SNPs) than previously analysed, to improve further the classification performance of a predictive test to estimate the risk of developing choroidal neovascular (CNV) disease. We developed a predictive model based solely on genetic markers and avoided inclusion of self-reported variables (eg smoking history) or non-static factors (BMI, education status) that might otherwise introduce inaccuracies in calculating individual risk estimates. We describe the performance of a test panel comprising 13 SNPs genotyped across a consolidated collection of four patient cohorts obtained from academic centres deemed appropriate for pooling. We report on predictive effect sizes and their classification performance. By incorporating multiple cohorts of homogeneous ethnic origin, we obtained >80 per cent power to detect differences in genetic variants observed between cases and controls. We focused our study on CNV, a subtype of advanced AMD associated with a severe and potentially treatable form of the disease. Lastly, we followed a two-stage strategy involving both test model development and test model validation to present estimates of classification performance anticipated in the larger clinical setting. The model contained nine SNPs tagging variants in the regulators of complement activation (RCA) locus spanning the complement factor H (CFH), complement factor H-related 4 (CFHR4), complement factor H-related 5 (CFHR5) and coagulation factor XIII B subunit (F13B) genes; the four remaining SNPs targeted polymorphisms in the complement component 2 (C2), complement factor B (CFB), complement component 3 (C3) and age-related maculopathy susceptibility protein 2 (ARMS2) genes. The pooled sample size (1,132 CNV cases, 822 controls) allowed for both model development and model validation to confirm the accuracy of risk prediction. At the validation stage, our test model yielded 82 per cent sensitivity and 63 per cent specificity, comparable with metrics reported with earlier testing models that included environmental risk factors. Our test had an area under the curve of 0.80, reflecting a modest improvement compared with tests reported with fewer SNPs.</p

    Multiplex protein detection with DNA readout via mass spectrometry

    No full text
    Multiplex protein quantification has been constrained by issues of assay specificity, sensitivity and throughput. This research presents a novel approach that overcomes these limitations using antibody–oligonucleotide conjugates for immuno-polymerase chain reaction (immuno-PCR) or proximity ligation, coupled with competitive PCR and MALDI-TOF mass spectrometry. Employing these combinations of technologies, we demonstrate multiplex detection and quantification of up to eight proteins, spanning wide dynamic ranges from femtomolar concentrations, using only microliter sample volumes
    corecore