19 research outputs found

    Evaluation of decreased haematocrit and haemoglobin levels in Plasmodium falciparum infected individuals from South-western Nigeria

    Get PDF
    Objective: Plasmodium parasite is responsible for the breakdown of red blood cells, resulting into life threatening situation. Thus, an observational study of the parasitaemic impact of P. falciparum on some haematological parameters in comparison to non-infected individuals was carried out in two endemic state of Nigeria (Edo and Lagos).Methodology and Results: Blood samples collected from individuals (from September 2016-March, 2017) aged 2 years and above, were subjected to rapid diagnostic test (RDT) and microscopy assay to determine the presence of P. falciparum. Further, auto-haematology analyser and/or microcentrifuge where available were employed to acquire information on the haematocrit and haemoglobin levels. Of the 2376 collected samples, three hundred (12.6%) were positive by RDT, out of which Plasmodium falciparum was detected microscopically in 137. The mean haematocrit (PCV) level (37.36±0.37) of the negative samples was significantly higher (p<0.001) than the positive samples (29.6± 0.6). Same relationship was observed when the mean haemoglobin of negative samples (12.08±0.12) was compared with those of positive samples (9.9± 0.2). Those with high parasite density had significantly (p<0.001) low haematocrit (PCV) as well as haemoglobin (p<0.001).Conclusion and application of findings: The findings from this study reveals serious impact of high P. falciparum burden on haemoglobin and haematocrit in infected individuals, the need to intensify efforts in delivering malaria control interventions especially to priority need areas such as in Edo State cannot be overemphasized. Thus, concerted efforts by all stakeholders in such areas is highly needed if malaria infection will ultimately be eliminated from the country.Keywords: malaria burden, Plasmodium falciparum, vulnerable, parasite density, haemoglobin, haematocrit, anaemi

    Efficacy of Piperonyl Butoxide (PBO) synergist on Pyrethroid and Dichlorodiphenyl Trichloroethane (DDT) resistant mosquitoes in Lekki, Lagos State, Nigeria

    Get PDF
    Vector control using insecticide is an integral part of the global strategy for management of mosquito-borne diseases.. The development of  insecticides resistance is a major concern in mosquito control. We evaluated the effect of piperonyl butoxide (PBO) synergist on dichlorodiphenyl trichloroethane (DDT) and pyrethroids resistant Anopheles gambiae s.l., Culex quinquefasciatus and Aedes aegypti in Lekki peninsula area of LagosState, Nigeria. Mosquito larval collected from breeding sites in Lekki peninsula were allowed to emerge in the insectary and identified using  appropriate morphological keys. Two-three days old female adults were subjected to susceptibility assays using WHO kits and insecticides impregnated test papers. Twenty (20) female adult mosquitoes of each genus were exposed to DDT (4 %) and permethrin (0.75 %) alone.  Subsequently, another set of 20 of each genus were pre-exposed to PBO (4 %) for 1 hour before exposing them to permethrin and DDT, all assays were carried out in four biological replicates. The knockdown time was recorded as the time intervals for 60 minutes and mortality at 24 hour. Resistance to DDT was detected with percentages mortality of 55, 60 and 87.5 % for An. gambiae, Cx. quinquefasciatus and Ae. aegypti species respectively. Pre-exposure of mosquitoes to PBO significantly suppressed (p<0.05) resistance to both DDT and permethrin in all the mosquito  species indicating the activities of P450 monooxygenase as a detoxifying enzymes mediating resistance to DDT and pyrethroids. Therefore, PBO should be incorporated in insecticide resistance management strategies in this area and others with similar mosquitos’ resistance profile. Keywords: Mosquitoes, Dichlorodiphenyl trichloroethane, Pyrethroids, Piperonyl butoxide, Insecticides resistanc

    Increased Trends of <em>P. vivax</em> in Sub-Saharan Africa: What Does it Mean for Malaria Elimination?

    Get PDF
    Plasmodium vivax being the most geographically spread Plasmodium species is considered sparsely distributed in sub-Saharan Africa (sSA) while P. falciparum is the most prevalent species in this region. Thus, control strategies in sSA have been disproportionately targeted towards falciparum malaria. Nevertheless, with the use of more sensitive malaria diagnostic platforms, there are more reports of P. vivax and other non-falciparum malaria in sSA. In addition, P. vivax is presumed benign, however there are new findings of severe cases recorded from P. vivax single or mixed infection with other Plasmodium species. Besides, the extended dormant period (lasting for weeks or months) is a challenge for achieving effective cure for vivax infections. Although, chloroquine has been proscribed for treatment P. falciparum, it still remains the drug of choice for P. vivax in most Asian countries where it is predominant. In sSA, artemisinin combination-based therapies (ACTs) are used for treatment of falciparum malaria and, it is probable that the use of ACT could be enhancing adaptive selection for P. vivax in the face of its increasing prevalence in the population. Hence, understanding epidemiological and biological factors, and data that could be contributing to the observed steady increase in P. vivax prevalence in sSA is important. In this chapter, we discuss the mechanisms for invasion of red blood cells, trends in increasing prevalence of vivax malaria, diagnostic tools, and the public health implications of P. vivax and P. falciparum co-endemicity in Africa

    Beyond SARS-CoV-2: Lessons That African Governments Can Apply in Preparation for Possible Future Epidemics.

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has placed unprecedented pressure on healthcare systems, even in advanced economies. While the number of cases of SARS-CoV-2 in Africa compared to other continents has so far been low, there are concerns about under-reporting, inadequate diagnostic tools, and insufficient treatment facilities. Moreover, proactiveness on the part of African governments has been under scrutiny. For instance, issues have emerged regarding the responsiveness of African countries in closing international borders to limit trans-continental transmission of the virus. Overdependence on imported products and outsourced services could have contributed to African governments' hesitation to shut down international air and seaports. In this era of emerging and re-emerging pathogens, we recommend that African nations should consider self-sufficiency in the health sector as an urgent priority, as this will not be the last outbreak to occur. In addition to the Regional Disease Surveillance Systems Enhancement fund (US$600 million) provided by the World Bank for strengthening health systems and disease surveillance, each country should further establish an epidemic emergency fund for epidemic preparedness and response. We also recommend that epidemic surveillance units should create a secure database of previous and ongoing pandemics in terms of aetiology, spread, and treatment, as well as financial management records. Strategic collection and analysis of data should also be a central focus of these units to facilitate studies of disease trends and to estimate the scale of requirements in preparation and response to any future pandemic or epidemic

    Comparative analysis of four malaria diagnostic tools and implications for malaria treatment in southwestern Nigeria.

    Get PDF
    OBJECTIVES: One of the problems encountered in malaria control and elimination is inaccurate diagnosis, resulting from the degree of sensitivity of the different malaria diagnostic tools. Even though microscopy remains the gold standard for malaria diagnosis, more sensitive and robust diagnostic tools such as polymerase chain reactions (PCR) are used in research settings to monitor interventions and track sub-microscopic infections due to some of the drawbacks of microscopy. Since diagnosis is a critical determinant for rational malaria treatment, it is imperative that accurate diagnosis must be assured for an effective treatment plan. Therefore, this study compared two routinely used point of care malaria diagnostic tools with two molecular tools and discussed their implication for malaria treatment. DESIGN: In this study, 436 individuals with suspected malaria were sampled and systematically tested using four methods, namely rapid diagnostic test (henceforth referred to as malaria RDT- mRDT), microscopy, nested PCR (nPCR), and quantitative PCR (qPCR). Test sensitivities and specificities were compared, and their level of concordance was determined. RESULTS: With nPCR as the gold standard, a false positivity rate of 42.2%, 8.9%, and 57.8% was obtained for mRDT, microscopy, and qPCR. Similarly, false negativity rates of 12.5%, 62.5%, and 0.8% were obtained for each of the methods mentioned above, respectively. Of all the tools assessed, qPCR gave the highest sensitivity (99.2%) and moderate specificity (42.2%), followed by the mRDT kit used (87.5%). CONCLUSIONS: With the detection of a high false positivity rate based on mRDT and a substantial proportion of sub-microscopic carriers in this study area by nested/quantitative PCR, we recommend that these molecular tools should be in specialized laboratories within the region to (i) track and treat sub-microscopic carriers to prevent their contribution to malaria transmission; (ii) provide reliable epidemiological data using high throughput testing tools for evaluating malaria interventions

    Translation of genomic epidemiology of infectious pathogens: Enhancing African genomics hubs for outbreaks.

    Get PDF
    BACKGROUND: Deadly emerging infectious pathogens pose an unprecedented challenge to health systems and economies, especially across Africa, where health care infrastructure is weak, and poverty rates remain high. Genomic technologies are vital for enhancing the understanding and development of intervention approaches against these pathogens, including Ebola and the novel coronavirus disease 2019 (COVID-19). DISCUSSION: Africa has contributed few genomes of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) to the global pool in growing open access repositories. To bridge this gap, the Africa Centre for Disease Control and Prevention (ACDC) is coordinating continent-wide initiatives to establish genomic hubs in selected well-resourced African centres of excellence. This will allow for standardisation and efficient and rapid data generation and curation. However, the strategy to ensure capacity for high-throughput genomics at selected hubs should not overshadow the deployment of portable, field-friendly and technically less demanding genomics technologies in all affected countries. This will enhance small-scale local genomic surveillance in outbreaks, leaving validation and large-scale approaches to be taken at central genomic hubs. CONCLUSION: The ACDC needs to scale-up its campaign for government support across African Union countries to ensure the sustainable financing of its strategy for increased pathogen genomic intelligence and other interventions in current and inevitable future epidemics in Africa

    Plasmodium falciparum population structure and genetic diversity of cell traversal protein for ookinetes and sporozoites (CelTOS) during malaria resurgences in Dielmo, Senegal

    Get PDF
    The ability to accurately measure the intensity of malaria transmission in areas with low transmission is extremely important to guide elimination efforts. Plasmodium falciparum Cell-traversal protein for ookinetes and sporozoites (PfCelTOS) is an important conserved sporozoite antigen reported as one of the promising malaria vaccine candidates, and could be used to estimate malaria transmission intensity. This study aimed at determining whether the diversity of PfCelTOS gene reflects the changes in malaria transmission that occurred between 2007 and 2014 in Dielmo, a Senegalese village, before and after the implementation of insecticide treated bed nets (ITNs). Of the 109 samples positive for PfCelTOS PCR, 96 (88%) were successfully sequenced and analysed for polymorphisms and population diversity. The number of segregating sites was higher during the pre-intervention period (13) and the malaria resurgences (11) than during the intervention period (5). Similarly, the number and diversity of haplotypes were higher during the pre-intervention period (16 and 0.914, respectively) and the malaria resurgences (6 and 0.821, respectively) than during the intervention period (4 and 0.758, respectively). Moreover, the average number of nucleotide differences was higher during the pre-intervention (3.792) and during malaria resurgences (3.467) than during the intervention period (2.189). The 3D7 KSSFNEP haplotype was only observed during the intervention period. Only two haplotypes were shared in both the pre-intervention and intervention periods while four haplotypes were shared between the pre-intervention and the malaria resurgences. The Fst values indicate moderate differentiation between pre-intervention and intervention periods (0.17433), and between intervention and malaria resurgences period (0.19198) as well as between pre-intervention and malaria resurgences periods (0.06607). PfCelTOS genetic diversity reflected changes of malaria transmission, with higher polymorphisms recorded before the large-scale implementation of ITNs and during the malaria resurgences. PfCelTOS is also a candidate vaccine; mapping its diversity across multiple endemic environments will facilitate the design and optimisation of a broad and efficacious vaccine

    Evolution of the Ace-1 and Gste2 Mutations and Their Potential Impact on the Use of Carbamate and Organophosphates in IRS for Controlling Anopheles gambiae s.l., the Major Malaria Mosquito in Senegal

    Get PDF
    Widespread of insecticide resistance amongst the species of the Anopheles gambiae complex continues to threaten vector control in Senegal. In this study, we investigated the presence and evolution of the Ace-1 and Gste2 resistance genes in natural populations of Anopheles gambiae s.l., the main malaria vector in Senegal. Using historical samples collected from ten sentinel health districts, this study focused on three different years (2013, 2017, and 2018) marking the periods of shift between the main public health insecticides families (pyrethroids, carbamates, organophosphates) used in IRS to track back the evolutionary history of the resistance mutations on the Ace-1 and Gste2 loci. The results revealed the presence of four members of the Anopheles gambiae complex, with the predominance of An. arabiensis followed by An. gambiae, An. coluzzii, and An. gambiae-coluzzii hybrids. The Ace-1 mutation was only detected in An. gambiae and An. gambiae-coluzzii hybrids at low frequencies varying between 0.006 and 0.02, while the Gste2 mutation was found in all the species with a frequency ranging between 0.02 and 0.25. The Ace-1 and Gste2 genes were highly diversified with twenty-two and thirty-one different haplotypes, respectively. The neutrality tests on each gene indicated a negative Tajima's D, suggesting the abundance of rare alleles. The presence and spread of the Ace-1 and Gste2 resistance mutations represent a serious threat to of the effectiveness and the sustainability of IRS-based interventions using carbamates or organophosphates to manage the widespread pyrethroids resistance in Senegal. These data are of the highest importance to support the NMCP for evidence-based vector control interventions selection and targeting

    Molecular identification of Plasmodium species responsible for malaria reveals Plasmodium vivax isolates in Duffy negative individuals from southwestern Nigeria

    No full text
    Abstract Background Malaria in Nigeria is principally due to Plasmodium falciparum and, to a lesser extent to Plasmodium malariae and Plasmodium ovale. Plasmodium vivax is thought to be absent in Nigeria in particular and sub-Saharan Africa in general, due to the near fixation of the Duffy negative gene in this population. Nevertheless, there are frequent reports of P. vivax infection in Duffy negative individuals in the sub-region, including reports from two countries sharing border with Nigeria to the west (Republic of Benin) and east (Cameroon). Additionally, there were two cases of microscopic vivax-like malaria from Nigerian indigenous population. Hence molecular surveillance of the circulating Plasmodium species in two states (Lagos and Edo) of southwestern Nigeria was carried out. Methods A cross-sectional survey between September 2016 and March 2017 was conducted. 436 febrile patients were included for the present work. Venous blood of these patients was subjected to RDT as well as microscopy. Further, parasite DNA was isolated from positive samples and PCR diagnostic was employed followed by direct sequencing of the 18S rRNA of Plasmodium species as well as sequencing of a portion of the promoter region of the Duffy antigen receptor for chemokines. Samples positive for P. vivax were re-amplified several times and finally using the High Fidelity Taq to rule out any bias introduced. Results Of the 256 (58.7%) amplifiable malaria parasite DNA, P. falciparum was, as expected, the major cause of infection, either alone 85.5% (219/256; 97 from Edo and 122 from Lagos), or mixed with P. malariae 6.3% (16/256) or with P. vivax 1.6% (4/256). Only one of the five P. vivax isolates was found to be a single infection. DNA sequencing and subsequent alignment of the 18S rRNA of P. vivax with the reference strains displayed very high similarities (100%). Remarkably, the T-33C was identified in all P. vivax samples, thus confirming that all vivax-infected patients in the current study are Duffy negative. Conclusion The present study gave the first molecular evidence of P. vivax in Nigeria in Duffy negative individuals. Though restricted to two states; Edo in South–South and Lagos in South-west Nigeria, the real burden of this species in Nigeria and sub-Saharan Africa might have been underestimated, hence there is need to put in place a country-wide, as well as a sub-Saharan Africa-wide surveillance and appropriate control measures
    corecore