13 research outputs found

    Susceptibility status of Anopheles gambiae s.l. (Diptera: Culicidae) from cabbage growing areas associated with pyrethroid and organophosphate use in Accra, Ghana

    Get PDF
    Resistance in malaria vectors is likely to be caused by the massive use of insecticides in agriculture. Anopheles gambiae s.l. collected from breeding grounds in two cabbage growing areas within Accra were assessed for levels of resistance to 0.75% permethrin, 0.05% deltamethrin, 5% malathion and 4% DDT using standard WHO susceptibility test kits. Pyrethroid and organophosphate residue levels in soil and run-off water from these cabbage farms were determined and possible association between resistance and residue levels were established. Compared to thesusceptible ‘Kisumu’ strain, both Korle-Bu and Airport populations were highly resistant to DDT and gave resistance levels which were over nine-fold for permethrin and over 2.5-fold for deltamethrin. Both wild and susceptible populations showed full susceptibility to malathion. The S and M forms of A. gambiae s.s. were found to occur in sympatry in the two study sites with a higher frequency of S form in the Airport area. Toxicity testing of extracts of soil and run-off water from these cabbage farms, using brine shrimp lethality tests, showed high level of toxicity, indicativeof the presence of residues of insecticides. Differential fractionation of these extracts using solid phase extractor (SPE) suggests that the bulk of residues in these extracts may be pyrethroids and organophosphates. No correlation was observed between either residue levels or residual bioactivity in soil and run-off water, and resistance levels in A.gambiae s.l. populations, collected from breeding grounds within the farms under investigation. It is proposed that resistance in A. gambiae larvae in these breeding sites contaminated with agricultural insecticides may have occurred over time due to continuous exposure to sub-lethal doses

    Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence.

    Get PDF
    BACKGROUND\ud \ud Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed.\ud \ud METHODS\ud \ud The efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510) (2 × 10(10) conidia m(-2)) applied on mud panels (simulating walls of traditional Tanzanian houses), black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily.\ud \ud RESULTS\ud \ud All fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p < 0.001). Mosquitoes exposed to B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14), and a higher risk than those exposed to treated polyester netting (p < 0.001). Residual activity of fungi declined over time; however, conidia remained pathogenic at 28 d post application, and were able to infect and kill 73 - 82% of mosquitoes within 14 d.\ud \ud CONCLUSION\ud \ud Both fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field

    Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have previously examined the effects of entomopathogenic fungi against adult mosquitoes, most application methods used cannot be readily deployed in the field. Because the fungi are biological organisms it is important to test potential field application methods that will not adversely affect them. The two objectives of this study were to investigate any differences in fungal susceptibility between an insecticide-resistant and insecticide-susceptible strain of <it>Anopheles gambiae sensu stricto</it>, and to test a potential field application method with respect to the viability and virulence of two fungal species</p> <p>Methods</p> <p>Pieces of white polyester netting were dipped in <it>Metarhizium anisopliae </it>ICIPE-30 or <it>Beauveria bassiana </it>IMI391510 mineral oil suspensions. These were kept at 27 ± 1°C, 80 ± 10% RH and the viability of the fungal conidia was recorded at different time points. Tube bioassays were used to infect insecticide-resistant (VKPER) and insecticide-susceptible (SKK) strains of <it>An. gambiae s.s</it>., and survival analysis was used to determine effects of mosquito strain, fungus species or time since fungal treatment of the net.</p> <p>Results</p> <p>The resistant VKPER strain was significantly more susceptible to fungal infection than the insecticide-susceptible SKK strain. Furthermore, <it>B. bassiana </it>was significantly more virulent than <it>M. anisopliae </it>for both mosquito strains, although this may be linked to the different viabilities of these fungal species. The viability of both fungal species decreased significantly one day after application onto polyester netting when compared to the viability of conidia remaining in suspension.</p> <p>Conclusions</p> <p>The insecticide-resistant mosquito strain was susceptible to both species of fungus indicating that entomopathogenic fungi can be used in resistance management and integrated vector management programmes to target insecticide-resistant mosquitoes. Although fungal viability significantly decreased when applied to the netting, the effectiveness of the fungal treatment at killing mosquitoes did not significantly deteriorate. Field trials over a longer trial period need to be carried out to verify whether polyester netting is a good candidate for operational use, and to see if wild insecticide-resistant mosquitoes are as susceptible to fungal infection as the VKPER strain.</p

    Combining Fungal Biopesticides and Insecticide-Treated Bednets to Enhance Malaria Control

    Get PDF
    In developing strategies to control malaria vectors, there is increased interest in biological methods that do not cause instant vector mortality, but have sublethal and lethal effects at different ages and stages in the mosquito life cycle. These techniques, particularly if integrated with other vector control interventions, may produce substantial reductions in malaria transmission due to the total effect of alterations to multiple life history parameters at relevant points in the life-cycle and transmission-cycle of the vector. To quantify this effect, an analytically tractable gonotrophic cycle model of mosquito-malaria interactions is developed that unites existing continuous and discrete feeding cycle approaches. As a case study, the combined use of fungal biopesticides and insecticide treated bednets (ITNs) is considered. Low values of the equilibrium EIR and human prevalence were obtained when fungal biopesticides and ITNs were combined, even for scenarios where each intervention acting alone had relatively little impact. The effect of the combined interventions on the equilibrium EIR was at least as strong as the multiplicative effect of both interventions. For scenarios representing difficult conditions for malaria control, due to high transmission intensity and widespread insecticide resistance, the effect of the combined interventions on the equilibrium EIR was greater than the multiplicative effect, as a result of synergistic interactions between the interventions. Fungal biopesticide application was found to be most effective when ITN coverage was high, producing significant reductions in equilibrium prevalence for low levels of biopesticide coverage. By incorporating biological mechanisms relevant to vectorial capacity, continuous-time vector population models can increase their applicability to integrated vector management

    Lethal and Pre-Lethal Effects of a Fungal Biopesticide Contribute to Substantial and Rapid Control of Malaria Vectors

    Get PDF
    Rapidly emerging insecticide resistance is creating an urgent need for new active ingredients to control the adult mosquitoes that vector malaria. Biopesticides based on the spores of entomopathogenic fungi have shown considerable promise by causing very substantial mortality within 7–14 days of exposure. This mortality will generate excellent malaria control if there is a high likelihood that mosquitoes contact fungi early in their adult lives. However, where contact rates are lower, as might result from poor pesticide coverage, some mosquitoes will contact fungi one or more feeding cycles after they acquire malaria, and so risk transmitting malaria before the fungus kills them. Critics have argued that ‘slow acting’ fungal biopesticides are, therefore, incapable of delivering malaria control in real-world contexts. Here, utilizing standard WHO laboratory protocols, we demonstrate effective action of a biopesticide much faster than previously reported. Specifically, we show that transient exposure to clay tiles sprayed with a candidate biopesticide comprising spores of a natural isolate of Beauveria bassiana, could reduce malaria transmission potential to zero within a feeding cycle. The effect resulted from a combination of high mortality and rapid fungal-induced reduction in feeding and flight capacity. Additionally, multiple insecticide-resistant lines from three key African malaria vector species were completely susceptible to fungus. Thus, fungal biopesticides can block transmission on a par with chemical insecticides, and can achieve this where chemical insecticides have little impact. These results support broadening the current vector control paradigm beyond fast-acting chemical toxins

    First report of pathogenicity of Beauveria bassiana RBL1034 to the malaria vector, Anopheles gambiae s.l. (Diptera; Culicidae) in Cameroon

    Get PDF
    Malaria vector control has been successfully achieved by the use of chemical insecticides. However, the evolution of insecticide resistance is rendering the standard approaches unsustainable. Biologicalcontrol agents such as entomopathogenic fungi are being considered for adult African malaria vectors. In the present study, laboratory trials were carried out to determine the pathogenicity of Beauveriabassiana RBL1034 to adult Anopheles gambiae s.l. Both male and female A. gambiae were exposed to targets inoculated with dry conidia of B. bassiana RBL1034 and the infection/mortality rates andrelationship with concentration of conidia per inoculated target were determined. B. bassiana RBL1034 was observed to be pathogenic to both male and female A. gambiae with an average mortality of 80% inthe treated compared to 10% in the untreated group. The median lethal time (MLT50) in treated and untreated groups was 8 days and >10 days, respectively. Mosquito mortality increased as conidialconcentration increased. Fungal sporulation was observed in 87% of the mosquito cadavers in the treated group while no sporulation was observed in the control. This study indicates that dry conidia ofB. bassiana RBL1034 are pathogenic to adult A. gambiae and could be a potential biological control agent for these mosquitoes
    corecore