14 research outputs found

    Outcomes of the “BRCA Quality Improvement Dissemination Program”: An Initiative to Improve Patient Receipt of Cancer Genetics Services at Five Health Systems

    Get PDF
    OBJECTIVE: A quality improvement initiative (QII) was conducted with five community-based health systems\u27 oncology care centers (sites A-E). The QII aimed to increase referrals, genetic counseling (GC), and germline genetic testing (GT) for patients with ovarian cancer (OC) and triple-negative breast cancer (TNBC). METHODS: QII activities occurred at sites over several years, all concluding by December 2020. Medical records of patients with OC and TNBC were reviewed, and rates of referral, GC, and GT of patients diagnosed during the 2 years before the QII were compared to those diagnosed during the QII. Outcomes were analyzed using descriptive statistics, two-sample t-test, chi-squared/Fisher\u27s exact test, and logistic regression. RESULTS: For patients with OC, improvement was observed in the rate of referral (from 70% to 79%), GC (from 44% to 61%), GT (from 54% to 62%) and decreased time from diagnosis to GC and GT. For patients with TNBC, increased rates of referral (from 90% to 92%), GC (from 68% to 72%) and GT (81% to 86%) were observed. Effective interventions streamlined GC scheduling and standardized referral processes. CONCLUSION: A multi-year QII increased patient referral and uptake of recommended genetics services across five unique community-based oncology care settings

    Global Carbon Budget 2022

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2_2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2_2 emissions (EFOS_{FOS}) are based on energy statistics and cement production data, while emissions from land-use change (ELUC_{LUC}), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2_2 concentration is measured directly, and its growth rate (GATM_{ATM}) is computed from the annual changes in concentration. The ocean CO2_2 sink (SOCEAN_{OCEAN}) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2_2 sink (SLAND_{LAND}) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM_{IM}), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS_{FOS} increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr1^{−1} (9.9 ± 0.5 GtC yr1^{−1} when the cement carbonation sink is included), and ELUC_{LUC} was 1.1 ± 0.7 GtC yr1^{−1}, for a total anthropogenic CO2_2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr1^{−1} (40.0 ± 2.9 GtCO2_2). Also, for 2021, GATM_{ATM} was 5.2 ± 0.2 GtC yr1^{−1} (2.5 ± 0.1 ppm yr1^{−1}), SOCEAN_{OCEAN} was 2.9  ± 0.4 GtC yr1^{−1}, and SLAND_{LAND} was 3.5 ± 0.9 GtC yr1^{−1}, with a BIM_{IM} of −0.6 GtC yr1^{−1} (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2_2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS_{FOS} relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2_2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr1^{−1} persist for the representation of annual to semi-decadal variability in CO2_2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2_2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b)

    Response to correspondence on Reproducibility of CRISPR-Cas9 Methods for Generation of Conditional Mouse Alleles: A Multi-Center Evaluation

    Get PDF

    Verbal Learning and Memory Deficits across Neurological and Neuropsychiatric Disorders: Insights from an ENIGMA Mega Analysis.

    Get PDF
    Deficits in memory performance have been linked to a wide range of neurological and neuropsychiatric conditions. While many studies have assessed the memory impacts of individual conditions, this study considers a broader perspective by evaluating how memory recall is differentially associated with nine common neuropsychiatric conditions using data drawn from 55 international studies, aggregating 15,883 unique participants aged 15–90. The effects of dementia, mild cognitive impairment, Parkinson’s disease, traumatic brain injury, stroke, depression, attention-deficit/hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder on immediate, short-, and long-delay verbal learning and memory (VLM) scores were estimated relative to matched healthy individuals. Random forest models identified age, years of education, and site as important VLM covariates. A Bayesian harmonization approach was used to isolate and remove site effects. Regression estimated the adjusted association of each clinical group with VLM scores. Memory deficits were strongly associated with dementia and schizophrenia (p \u3c 0.001), while neither depression nor ADHD showed consistent associations with VLM scores (p \u3e 0.05). Differences associated with clinical conditions were larger for longer delayed recall duration items. By comparing VLM across clinical conditions, this study provides a foundation for enhanced diagnostic precision and offers new insights into disease management of comorbid disorders

    Search for pair production of excited top quarks in the lepton+jets final state

    Get PDF

    The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR

    Get PDF
    Background and purpose Real time adaptive radiotherapy that enables smaller irradiated volumes may reduce pulmonary toxicity. We report on the first patient treatment of electromagnetic-guided real time adaptive radiotherapy delivered with MLC tracking for lung stereotactic ablative body radiotherapy. Materials and methods A clinical trial was developed to investigate the safety and feasibility of MLC tracking in lung. The first patient was an 80-year old man with a single left lower lobe lung metastasis to be treated with SABR to 48 Gy in 4 fractions. In–house software was integrated with a standard linear accelerator to adapt the treatment beam shape and position based on electromagnetic transponders implanted in the lung. MLC tracking plans were compared against standard ITV-based treatment planning. MLC tracking plan delivery was reconstructed in the patient to confirm safe delivery. Results Real time adaptive radiotherapy delivered with MLC tracking compared to standard ITV-based planning reduced the PTV by 41% (18.7–11 cm3) and the mean lung dose by 30% (202–140 cGy), V20 by 35% (2.6–1.5%) and V5 by 9% (8.9–8%). Conclusion An emerging technology, MLC tracking, has been translated into the clinic and used to treat lung SABR patients for the first time. This milestone represents an important first step for clinical real-time adaptive radiotherapy that could reduce pulmonary toxicity in lung radiotherapy

    Capacity Building in Pediatric Critical Care-Global Health Research and Education: The Blantyre Experience

    No full text
    Pediatric critical care medicine (PCCM), as it is practiced in high-income countries, is focused on specialized medical care for the most vulnerable pediatric patient populations. However, best practices for provision of that care globally are lacking. Thus, PCCM research and education programming can potentially fill significant knowledge gaps by facilitating the development of evidence-based clinical guidelines that reduce child mortality on a global scale. Malaria remains a leading cause of pediatric mortality worldwide. The Blantyre Malaria Project (BMP) is a research and clinical care collaborative that has focused on reducing the public health burden of pediatric cerebral malaria in Malawi since 1986. In 2017, the requirements of a new research study led to the creation of PCCM services in Blantyre, creating the opportunity to establish a PCCM-Global Health Research Fellowship by BMP in collaboration with the University of Maryland School of Medicine. In this perspective piece, we reflect on the evolution of the PCCM-Global Health research fellowship. Although the specifics of this fellowship are out of the scope of this perspective, we discuss the context allowing for the development of this program and explore some early lessons learned to consider for future capacity-building efforts in the future of PCCM-Global Health research

    The characteristics of SARS-CoV-2-positive children in Australian hospitals: a PREDICT network study

    No full text
    Objectives: To examine the clinical characteristics and short term outcomes for children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections who presented to Australian hospitals during 2020 and 2021. Design, setting: Retrospective case review study in nineteen hospitals of the Paediatric Research in Emergency Departments International Collaborative (PREDICT) network from all Australian states and territories, including seven major paediatric tertiary centres and eight Victorian hospitals. Participants: SARS-CoV-2-positive people under 18 years of age who attended emergency departments or were admitted to hospital during 1 February 2020 – 31 December 2021. Main outcome measures: Epidemiological and clinical characteristics, by hospital care type (emergency department [ED] or inpatient care). Results: A total of 1193 SARS-CoV-2-positive children and adolescents (527 girls, 44%) attended the participating hospitals (107 in 2020, 1086 in 2021). Their median age was 3.8 years (interquartile range [IQR], 0.8–11.4 years); 63 were Aboriginal or Torres Strait Islander people (5%). Other medical conditions were recorded for 293 children (25%), including asthma (86, 7%) and premature birth (68, 6%). Medical interventions were not required during 795 of 1181 ED presentations (67%); children were discharged directly home in 764 cases (65%) and admitted to hospital in 282 (24%; sixteen to intensive care units). The 384 admissions to hospital (including 102 direct admissions) of 341 children (25 infants under one month of age) included 23 to intensive care (6%); the median length of stay was three days (IQR, 1–9 days). Medical interventions were not required during 261 admissions (68%); 44 children received respiratory support (11%) and 21 COVID-19- specific treatments, including antiviral and biologic agents (5%). Being under three months of age (v one year to less than six years: odds ratio [OR], 2.6; 95% confidence interval [CI], 1.7–4.0) and pre-existing medical conditions (OR, 2.5; 95% CI, 1.9–3.2) were the major predictors of hospital admission. Two children died, including one without a known pre-existing medical condition. Conclusion: During 2020 and 2021, most SARS-CoV-2-positive children and adolescents who presented to participating hospitals could be managed as outpatients. Outcomes were generally good, including for those admitted to hospital

    Free-water imaging of the cholinergic basal forebrain and pedunculopontine nucleus in Parkinson\u27s disease

    No full text
    Free-water imaging can predict and monitor dopamine system degeneration in people with Parkinson\u27s disease. It can also enhance the sensitivity of traditional diffusion tensor imaging (DTI) metrics for indexing neurodegeneration. However, these tools are yet to be applied to investigate cholinergic system degeneration in Parkinson\u27s disease, which involves both the pedunculopontine nucleus and cholinergic basal forebrain. Free-water imaging, free-water-corrected DTI and volumetry were used to extract structural metrics from the cholinergic basal forebrain and pedunculopontine nucleus in 99 people with Parkinson\u27s disease and 46 age-matched controls. Cognitive ability was tracked over 4.5 years. Pearson\u27s partial correlations revealed that free-water-corrected DTI metrics in the pedunculopontine nucleus were associated with performance on cognitive tasks that required participants to make rapid choices (behavioural flexibility). Volumetric, free-water content and DTI metrics in the cholinergic basal forebrain were elevated in a sub-group of people with Parkinson\u27s disease with evidence of cognitive impairment, and linear mixed modelling revealed that these metrics were differently associated with current and future changes to cognition. Free water and free-water-corrected DTI can index cholinergic degeneration that could enable stratification of patients in clinical trials of cholinergic interventions for cognitive decline. In addition, degeneration of the pedunculopontine nucleus impairs behavioural flexibility in Parkinson\u27s disease, which may explain this region\u27s role in increased risk of falls
    corecore