137 research outputs found

    The career decision-making process of Irish underage international footballers

    Get PDF
    Researching adolescents who participate in sport, particularly at an elite level, involves investigating their environment, social support structures and how they develop and maintain continuity in their lives during the many transitions they make. A key feature of this research is its sociological and longitudinal dimension which provides a window into the lives of young Irish underage international football players. Because this social world has never been examined before, a conscious decision was made to ensure the focus of the research harnessed the voices of the participants. The key reason for doing so was to illustrate how they view the elite sporting environment they are immersed in, their attitudes to education and their longterm career planning, all of which are encapsulated by the ambition to migrate from Ireland to a professional football club in the United Kingdom. In an attempt to provide a better understanding of the career decision-making process of the participants in this study, a pragmatic methodological research approach was chosen. This was principally because of the requirement to utilise all available resources for data collection having particular sensitivity to contextual considerations. This involved administering a selfcompletion questionnaire to three Irish underage international teams, followed by three separate focus groups and eleven individual interviews over a three-year period. The participants of the study had all been members of one of the three underage international football teams under investigation. This included the Irish under fifteen, under sixteen and under seventeen football squads. This research is underpinned by a theoretical framework called careership theory, developed by Hodkinson, Sparkes and Hodkinson (1996). The application of this conceptual framework is particularly important because it examines the central relationship between structure (the objective) and agency (the subjective). In addition to this, the work of Pierre Bourdieu, Jean CĂŽté’s Developmental Model of Sports Participation, Schlossberg’s (1981) model for analyzing human adaptation to transition and Scanlon and Doyle’s (2018) model for supported transition are utilised as they work seamlessly to build on careership theory. They are also used to plot and understand the transitions young international footballers believe they have to make to become full-time professionals

    National Soils Database

    Get PDF
    End of project reportThe objectives of the National Soils Database project were fourfold. The first was to generate a national database of soil geochemistry to complete the work that commenced with a survey of the South East of Ireland carried out in 1995 and 1996 by Teagasc (McGrath and McCormack, 1999). Secondly, to produce point and interpolated spatial distribution maps of major, minor and trace elements and to interpret these with respect to underlying parent material, glacial geology, land use and possible anthropogenic effects. A third objective was to investigate the microbial community structure in a range of soil types to determine the relationship between soil microbiology and chemistry. The final objective was to establish a National Soils Archive

    Biological phosphorus removal during high-rate, low-temperature, anaerobic digestion of wastewater.

    Get PDF
    We report, for the first time, extensive biologically-mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (~2%) within the sludge bed and fixed-film biofilms. 4’, 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4-1.5 kg COD m-3 d-1 and hydraulic retention times of 8-24 hours, while phosphate removal efficiency ranged from 28-78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12˚C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina Miseq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterised polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter and Acinetobacter was recorded at low numbers. However, it is unknown as yet if these were responsible for the luxury polyP uptake observed in this system. The possibility of efficient phosphate removal and recovery from wastewater during AD would represent a major advance in the scope for widespread application of anaerobic wastewater treatment technologies

    Individual methanogenic granules are whole-ecosystem replicates with reproducible responses to environmental cues

    Get PDF
    Background In this study, individual methanogenic (anaerobic), granular biofilms were used as true community replicates to assess whole-microbial-community responses to environmental cues. The aggregates were sourced from a lab-scale, engineered, biological wastewater treatment system, were size-separated, and the largest granules were individually subjected to controlled environmental cues in micro-batch reactors (ÎŒBRs). Results Individual granules were identical with respect to the structure of the active community based on cDNA analysis. Additionally, it was observed that the active microbial community of individual granules, at the depth of 16S rRNA gene sequencing, produced reproducible responses to environmental changes in pH, temperature, substrate, and trace-metal supplementation. We identified resilient and susceptible taxa associated with each environmental condition tested, as well as selected specialists, whose niche preferences span the entire trophic chain required for the complete anaerobic degradation of organic matter. Conclusions We found that single anaerobic granules can be considered highly-replicated whole-ecosystems with potential usefulness for the field of microbial ecology. Additionally, they act as the smallest whole-community unit within the meta-community of an engineered bioreactor. When subjected to various environmental cues, anaerobic granules responded reproducibly allowing for rare or unique opportunities for high-throughput studies testing whole-community responses to a wide range of environmental conditions

    Characterisation of norovirus contamination in an Irish shellfishery using real-time RT-qPCR and sequencing analysis

    Get PDF
    Copyright © 2012 Rajko-Nenow et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Peer reviewedNorovirus (NoV) is the single most important agent of foodborne viral gastroenteritis worldwide. Bivalve shellfish, such as oysters, grown in areas contaminated with human faecal waste may become contaminated with human pathogens including NoV. A study was undertaken to investigate NoV contamination in oysters (Crassostrea gigas) from a shellfishery over a 24 month period from October 2007 to September 2009. Oyster samples were collected monthly from a commercial shellfish harvest area classified as category B under EU regulations, but that had had been closed for commercial harvesting due to its previous association with NoV outbreaks. Real-time reverse transcription quantitative PCR (RT-qPCR) was used to determine the concentration of human NoV genogroups I and II (GI and GII) in monthly samples. Total NoV (GI and GII) concentrations in NoV positive oysters ranged from 97 to 20,080 genome copies g− 1 of digestive tissue and displayed a strong seasonal trend with greater concentrations occurring during the winter months. While NoV GII concentrations detected in oysters during both years were similar, NoV GI concentrations were significantly greater in oysters during the winter of 2008/09 than during the winter of 2007/08. To examine the NoV genotypes present in oyster samples, sequence analysis of nested RT-PCR products was undertaken. Although NoV GII.4 is responsible for the vast majority of reports of outbreaks in the community, multiple NoV genotypes were identified in oysters during this study: GI.4, GI.3, GI.2, GII.4, GII.b, GII.2, GII.12, and GII.e. NoV GI.4 was the most frequently detected genotype throughout the study period and was detected in 88.9% of positive samples, this was followed by GII.4 (43.7%) and GII.b (37.5%). This data demonstrates the diversity of NoV genotypes that can be present in sewage contaminated shellfish and that a disproportionate number of non-NoV GII.4 genotypes can be found in environmental samples compared to the number of recorded human infections associated with non-NoV GII.4 genotypes

    Toward assessing farm-based anaerobic digestate public health risks : comparative investigation with slurry, effect of pasteurization treatments, and use of miniature bioreactors as proxies for pathogen spiking trials

    Get PDF
    Manure and slurry may contain a range of bacterial, viral, and parasitic pathogens and land application of these organic fertilizers typically occurs without prior treatment. In-situ treatment through farm-based anaerobic digestion (AD) of such organic fertilizers co-digested with food-production wastes is multi-beneficial due to energy recovery, increased farm incomes and noxious gas reduction. Before risk assessment can be carried out at field scale an investigation of the fate of relevant target pathogens during the actual AD process must be undertaken, requiring the development of practical test systems for evaluation of pathogen survival. The present study examines miniature (50 mL) and laboratory (10 L) scale AD systems. Treatments included slurry co-digested with fats, oils, and grease (FOG) under typical operating and pasteurization conditions used in farm-based AD, in batch-fed miniature and laboratory mesophilic (37°C) continuously stirred tank reactors. Biogas production, pH, chemical oxygen demand, volatile solids, and ammonia concentration were measured throughout the trial, as were fecal indicator bacteria (FIB) i.e., total coliforms, Escherichia coli, and Enterococcus species. The miniature and laboratory bioreactors performed similarly in terms of physicochemical parameters and FIB die-off. In the absence of pasteurization, after 28 days, enterococci numbers were below the <1,000 cfu g−1 threshold required for land application, while E. coli was no longer detectable in the digestate. For comparison, FIB survival in slurry was examined and after 60 days of storage, none of the FIB tested was <1,000 cfu g−1, suggesting that slurry would not be considered safe for land application if FIB thresholds required for AD digestate were to be applied. Taken together we demonstrate that (i) miniature-scale bioreactors are valid proxies of farm-based AD to carry out targeted pathogen survival studies and (ii) in situ AD treatment of slurry prior to land application reduces the level of FIB, independently of pasteurization, which in turn might be indicative of a decreased potential pathogen load to the environment and associated public health risks

    Beyond basic diversity estimates – analytical tools for mechanistic interpretations of amplicon sequencing data

    Get PDF
    Understanding microbial ecology through amplifying short read regions, typically 16S rRNA for prokaryotic species or 18S rRNA for eukaryotic species, remains a popular, economical choice. These methods provide relative abundances of key microbial taxa, which, depending on the experimental design, can be used to infer mechanistic ecological underpinnings. In this review, we discuss recent advancements in in situ analytical tools that have the power to elucidate ecological phenomena, unveil the metabolic potential of microbial communities, identify complex multidimensional interactions between species, and compare stability and complexity under different conditions. Additionally, we highlight methods that incorporate various modalities and additional information, which in combination with abundance data, can help us understand how microbial communities respond to change in a typical ecosystem. Whilst the field of microbial informatics continues to progress substantially, our emphasis is on popular methods that are applicable to a broad range of study designs. The application of these methods can increase our mechanistic understanding of the ongoing dynamics of complex microbial communities

    Financial leverage and stock returns: evidence from an emerging economy

    Get PDF
    The aim of this research was to examine the propositions of Campbell et al. and Mirza et al. on pricing of leverage in stock returns using a comprehensive set of firms listed on the Karachi Stock Exchange (KSE) over a period of 13 years. Our results suggest that while size, value and, more importantly, financial leverage are systematic in nature, market risk premium is not a relevant factor. The results confirm the notion of leverage premium and have important implications for financial managers, investment analysts and other market participants who use asset pricing frameworks for investment appraisals. These findings have global relevance, notably for other emerging and developing economies where default risk is of importance due to cyclical nature of cash flows and low recovery rates owing to weaknesses of legal structure

    Metagenomic and HT-qPCR analysis reveal the microbiome and resistome in pig slurry under storage, composting, and anaerobic digestion

    Get PDF
    peer-reviewedDirect application of pig slurry to agricultural land, as a means of nutrient recycling, introduces pathogens, antibiotic resistant bacteria, or genes, to the environment. With global environmental sustainability policies mandating a reduction in synthetic fertilisation and a commitment to a circular economy it is imperative to find effective on-farm treatments of slurry that maximises its fertilisation value and minimises risk to health and the environment. We assessed and compared the effect of storage, composting, and anaerobic digestion (AD) on pig slurry microbiome, resistome and nutrient content. Shotgun metagenomic sequencing and HT-qPCR arrays were implemented to understand the dynamics across the treatments. Our results identified that each treatment methods have advantages and disadvantages in removal pollutants or increasing nutrients. The data suggests that storage and composting are optimal for the removal of human pathogens and anaerobic digestion for the reduction in antibiotic resistance (AMR) genes and mobile genetic elements. The nitrogen content is increased in storage and AD, while reduced in composting. Thus, depending on the requirement for increased or reduced nitrogen the optimum treatment varies. Combining the results indicates that composting provides the greatest gain by reducing risk to human health and the environment. Network analysis revealed reducing Proteobacteria and Bacteroidetes while increasing Firmicutes will reduce the AMR content. KEGG analysis identified no significant change in the pathways across all treatments. This novel study provides a data driven decision tree to determine the optimal treatment for best practice to minimise pathogen, AMR and excess or increasing nutrient transfer from slurry to environment

    Ranking hazards pertaining to human health concerns from land application of anaerobic digestate

    Get PDF
    peer-reviewedAnaerobic digestion (AD) has been identified as one of the cleanest producers of green energy. AD typically uses organic materials as feedstock and, through a series of biological processes, produces methane. Farmyard manure and slurry (FYM&S) are important AD feedstock and are typically mixed with agricultural waste, grass and/or food wastes. The feedstock may contain many different pathogens which can survive the AD process and hence also possibly be present in the final digestate. In this study, a semi-quantitative screening tool was developed to rank pathogens of potential health concern emerging from AD digestate. A scoring system was used to categorise likely inactivation during AD, hazard pathways and finally, severity as determined from reported human mortality rates, number of global human-deaths and infections per 100,000 populations. Five different conditions including mesophilic and thermophilic AD and three different pasteurisation conditions were assessed in terms of specific pathogen inactivation. In addition, a number of scenarios were assessed to consider foodborne incidence data from Ireland and Europe and to investigate the impact of raw FYM&S application (without AD and pasteurisation). A sensitivity analysis revealed that the score for the mortality rate (S3) was the most sensitive parameter (rank coefficient 0.49) to influence the final score S; followed by thermal inactivation score (S1, 0.25) and potential contamination pathways (S2, 0.16). Across all the scenarios considered, the screening tool prioritised Cryptosporidium parvum, Salmonella spp., norovirus, Streptococcus pyogenes, enteropathogenic E. coli (EPEC), Mycobacterium spp., Salmonella typhi (followed by S. paratyphi), Clostridium spp., Listeria monocytogenes and Campylobacter coli as the highest-ranking pathogens of human health concern resulting from AD digestate in Ireland. This tool prioritises potentially harmful pathogens which can emerge from AD digestate and highlights where regulation and intervention may be required
    • 

    corecore