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Abstract 

Anaerobic digestion (AD) has been identified as one of the cleanest producers of green 

energy. AD typically uses organic materials as feedstock and, through a series of biological processes, 

produces methane. Farmyard manure and slurry (FYM&S) are important AD feedstock and are 

typically mixed with agricultural waste, grass and/or food wastes. The feedstock may contain many 

different pathogens which can survive the AD process and hence also possibly be present in the final 

digestate. In this study, a semi-quantitative screening tool was developed to rank pathogens of 

potential health concern emerging from AD digestate. A scoring system was used to categorise likely 

inactivation during AD, hazard pathways and finally, severity as determined from reported human 

mortality rates, number of global human-deaths and infections per 100,000 populations. Five different 

conditions including mesophilic and thermophilic AD and three different pasteurisation conditions 

were assessed in terms of specific pathogen inactivation. In addition, a number of scenarios were 

assessed to consider foodborne incidence data from Ireland and Europe and to investigate the impact 

of raw FYM&S application (without AD and pasteurisation). A sensitivity analysis revealed that the 

score for the mortality rate (S3) was the most sensitive parameter (rank coefficient 0.49) to influence 

the final score S; followed by thermal inactivation score (S1, 0.25) and potential contamination 

pathways (S2, 0.16). Across all the scenarios considered, the screening tool prioritised 

Cryptosporidium parvum, Salmonella spp., norovirus, Streptococcus pyogenes, enteropathogenic E. 

coli (EPEC), Mycobacterium spp., Salmonella typhi (followed by S. paratyphi), Clostridium spp., 

Listeria monocytogenes and Campylobacter coli as the highest-ranking pathogens of human health 

concern resulting from AD digestate in Ireland. This tool prioritises potentially harmful pathogens 

which can emerge from AD digestate and highlights where regulation and intervention may be 

required. 

Keywords 

Hazard identification, semi-quantitative screening, anaerobic digestion, pasteurisation, risk 

assessment
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1. Introduction 

Harmful pathogens can be present in higher concentrations in animal FYM&S (Jones and 

Martin 2003; Avery et al. 2004; Nicholson et al. 2005) compared to food waste (Jones and Martin 

2003), grass and agricultural residues (Seadi and Lukehurst 2012). Hutchison et al. (2004) reported 

high numbers of zoonotic pathogens (E. coli O157, Salmonella, Listeria monocytogenes, 

Campylobacter, Cryptosporidium parvum, Giardia intestinalis) in both fresh and stored animal waste 

(cattle, pig, poultry and sheep). The application of raw manure and slurry is standard practice on 

farms to utilise animal waste while also replenishing nutrients to the soil (Szogi et al. 2015). AD is a 

process which can also use FYM&S as a feedstock and, by the action of microorganisms, break down 

biodegradable organic compounds into simpler molecules in the absence of oxygen to produce 

methane (Abbasi et al. 2012; Manyi-Loh et al. 2013, 2016). The methane can also be cleaned and use 

as a fossil fuel replacement for transport and domestic use (Purdy et al. 2018). Another advantage of 

AD is that the process itself can inactivate pathogens; however, complete inactivation is not always 

achieved; for example, Smith et al. (2005) reported a 2 log reduction in E. coli could be achieved by 

mesophilic AD (M-AD). However, E. coli can be present as high as 6 log CFU g
-1

 (Hutchison et al. 

2004) in fresh cattle manure and therefore, there is the potential for E. coli to survive the M-AD 

process. 

AD processes typically fall into three types (i) mesophilic (35 to 45 °C) AD (or M-AD), (ii) 

thermophilic (45 to 80 °C) AD (or T-AD) and (iii) two-step/ phase AD; which is a combination of M-

AD and T-AD (Sakar et al. 2009; Abbasi et al. 2012; Manyi-Loh et al. 2013; Vanegas and Bartlett 

2013). M-AD is the most common system in Ireland (Smyth et al. 2009).  It has a more stable 

operation but a lower biogas production rate compared to other types of AD. In contrast, the higher 

temperature process (T-AD) reduces pathogen numbers even further and provides more rapid reaction 

rates than M-AD (Mahmud et al. 2016). Process parameters such as temperature, pH, hydraulic 

retention time, organic loading rate, carbon-nitrogen ratio and free ammonia presence can also have a 

significant influence on pathogen inactivation (Sakar et al. 2009; Abbasi et al. 2012; Manyi-Loh et al. 

2013).  
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Waste-to-energy processes can play a role in the transition to a circular economy (European 

Commission 2017). In the future, more consideration should be given to AD of biodegradable waste, 

where material recycling is combined with energy recovery (European Commission 2017). Given the 

drive for renewable energy sources, the use of AD to process waste streams is likely to increase. 

There is a concern that several pathogens of significance may survive the process. Therefore, this 

study examined whether AD process residues (i.e. digestate) could re-enter the circular economy 

(Longhurst et al. 2019) by exploring issues of potential human, animal and environmental risk; and 

emphasises the considerable weight of evidence required to inform stakeholders of the safety of 

digestate. 

 Several additional methods can be used in conjunction with AD to reduce the number of 

pathogens in the final digestate. These include treatment with lime, chlorine, UV-light, ozone, high 

internal pressure in the vessel (Alvarez et al. 2003; Erickson and Ortega 2006) or most commonly an 

additional heat treatment (pasteurisation) step (Smith et al. 2005). The European Commission 

recommends pasteurisation (heat treatment) at 70 °C for 1 hour for feedstock before the AD process; 

whereas, there is a national transformative parameter recommendation of 60 °C for 48 continuous 

hours twice (DAFM 2014) in Ireland. All these processes influence the level of pathogens in the final 

AD digestate, which is destined for application to agricultural land. 

 Several disease outbreaks have been observed in Europe over the last 20 years 

(Eurosurveillance 2019) as highlighted in Fig. 1. It is understood that Salmonella, influenza virus, 

measles virus, Cryptosporidium and E. coli are the top five pathogens which have been responsible 

for several human health outbreaks in Europe; however, influenza virus and measles virus can only be 

transmitted from person to person (Waring et al. 2005; Li et al. 2009; Borges et al. 2016). In terms of 

the application of AD digestate to the agricultural land person to person is a non-critical pathway. 

Airborne, foodborne, waterborne and animal contact (zoonotic) diseases are of greatest human health 

concern (Health Service Executive 2019). Foodborne illness (gastroenteritis) is a particular global 

health concern (WHO 2008; Thomas et al. 2013; Torgerson et al. 2015). Nag et al. (2019) mentioned 

that the application of raw FYM&S and anaerobic digestate could possibly play a role in pathogen 

transportation from agricultural land to humans through the food chain (mainly ready to eat RTE 
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crops). According to TIME Health (2017), 351,000 people die of food-poisoning globally every year. 

Foodborne disease means, according to WHO (2008), any disease of an infectious or toxic nature 

caused by consumption of food and a foodborne disease outbreak can be defined in the following 

ways, 

a) The observed number of cases of disease exceeds the expected number 

b) The occurrence of two or more cases of a similar foodborne disease resulting from the 

ingestion of a common food.  

The Health Protection Surveillance Centre (HSE 2019) cited by Nag et al. (2019) suggests 

that Clostridium, Cryptosporidium, E. coli, Salmonella are the main pathogens of human health 

concern in Ireland. This highlights the importance of considering the severity (fatality/ mortality rate) 

rather than simply the number of confirmed cases in an outbreak. Tropical diseases; mostly parasites 

(helminths) and some viral diseases such as yellow fever virus, West Nile virus, dengue virus, tick-

borne encephalitis virus, zika virus, ebola virus, lassa virus, marburg virus (Hotez et al. 2007) are not 

common in Ireland and there is no historical evidence of such outbreaks in Europe. 

In some countries such as Denmark, animal manure is treated with mixed municipal sewage 

(Hartmann et al. 2002).  Therefore, pathogens which are present both in animal manure, slurry and 

human effluent need to be considered in the European context. In contrast, grass, agriculture residues, 

animal manure and slurry, the organic fraction of municipal solid waste (comprises food and garden 

waste only) are considered the only feedstock used in AD plants in Ireland (Singh et al. 2010). The 

pathogens which have possible transmission pathways such as air, soil or food, water, and animal 

contact/zoonotic were considered for this study, while diseases which can be spread only by person-

to-person contact (HPSC 2005) or insect bites were excluded. 

It is widely accepted as good practice in risk assessments to carry out an initial screening to 

identify hazards of greatest concern. There are two broad methods of risk assessment; qualitative and 

quantitative. When there are limited data a qualitative approach is recommended for decision making 

(Lammerding and Fazil 2000). A semi-quantitative model is a bridge between qualitative and 

quantitative risk assessment models where risk factor categories are typically given a score and final 

risk scores calculated (Teunis and Schijven 2019). The principal hypothesis of this study was 
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“Pathogens have a different propensity to survive the AD process while also potentially affecting 

humans through different pathways”. Hence, the overall aim of this study was to identify the key 

hazardous pathogens of potential human health concern in Europe and specifically in the Republic of 

Ireland which can be transmitted through FYM&S and anaerobic digestate using a semi-quantitative 

screening method.  

2. Materials and methods 

In this study, a semi-quantitative screening method was developed. A framework of the 

approach is given in Fig. 2. Five different time-temperature conditions such as M-AD 37 °C (4 days), 

T-AD 55 °C (4 days), Irish pasteurisation 60 °C (4 days), EU pasteurisation 70 °C (60 min), and 

higher pasteurisation 90 °C (60 min) were monitored (Table 1) for the baseline model (BM) to assess 

the likely fate of the pathogens after the AD process. As recommended by Nag et al. (2019) a semi-

quantitative model was used in this study to rank the most hazardous pathogens depending on their 

ability to survive the AD process, the possible routes (aerosol, ingestion and direct contact) of 

transmission and the potential severity of illness. Indicator organisms are often used as surrogates for 

pathogens (Harwood et al. 2005). Table 2 shows the widely accepted indicator organisms for such 

studies. Assessing the ability of the process to inactivate indicator organisms should provide a high 

degree of confidence regarding inactivation of comparable pathogens. 

2.1. Baseline model (BM) 

 As a primary qualitative/ semi-quantitative screening process for risk assessment, the 

likelihood-severity (L × S matrix) approach has been used (Shariff and Zaini 2013). The likelihood 

(L) of exposure to pathogens is influenced by two parameters in this model; the first one is the 

inactivation of pathogens (S1) through the AD process and secondly, the ability of pathogens 

spreading through different environmental pathways (S2) (such as air, soil attached to food, water or 

animal contact). The mortality rate (S3) was used to consider the likely severity for humans following 

infection by a particular pathogen. 
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2.1.1. Initial hazard selection 

 Using the scientific literature (Carrington 2001; Jones and Martin 2003; Lepeuple et al. 2004; 

WHO 2008; Longhurst et al. 2013; Torgerson et al. 2015) and the Eurosurveillance (2019) database, 

data from 300 outbreaks over the last 20 years were analysed (Fig. 2). This represents a broad list of 

hazards (Table S1 of the supplementary note) in the past which potentially represent a human health 

challenge. According to AFBI and DAFM (2019), gastrointestinal infection, respiratory infections, 

systemic infection, clostridial infection, cardiac and liver disease are the most common diseases in 

cattle. Whereas, sheep mortality is predominantly caused by parasitic diseases, respiratory infections, 

septicaemia, clostridial and enteric disease. Pneumonia, enteric infection, septicaemia and nervous 

system diseases are the predominant causes of pig mortality. Septicaemia, digestive, musculoskeletal, 

respiratory and parasitic diseases are common in the poultry industry. The relative frequency of 

pathogens found in post-mortem analysis on the carcass and faecal samples of dead animals are 

detailed in Table 3.  

2.1.2. Influence of thermal treatment 

 The fate and inactivation of pathogens under different process conditions varies greatly  

(Table S2) which makes it difficult to compare their behaviour under standard process conditions 

detailed in Table 1. Hence, the „Z‟ value concept, which indicates the temperature rise necessary to 

reduce the decimal reduction time („D‟ value) by one log10 (Juneja and Marmer 1999; Bertolatti et al. 

2001), was used to compare the inactivation conditions. Thermal inactivation data for each of the 

pathogens were collected from the available literature with a specific focus on the time-temperature 

relationship with Z value (reference temperature at which the time-temperature inactivation tests were 

done) and Dref (duration of heating at Tref for complete inactivation of the pathogen). Songer (2010) 

indicated that microbial inactivation of spore-forming organisms is difficult as spores are much more 

heat resistant compared to the parent cells and spores can survive in the soil for many years 

(Sahlström 2003). Therefore, the spore-forming criteria (Table S2) were considered in order to select 

suitable indicator bacteria. 
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For example, enterohemorrhagic E. coli O157: H7 can be inactivated at  55 °C for 40 

minutes; Equation 1 can investigate whether inactivation occurs at 37 °C (4 days), 55 °C (4 days), 60 

°C (4 days), 70 °C (60 min), and 90 °C (60 min). Most of the references mentioned in Table S3 

indicated a linear relationship between pathogen survival or inactivation and temperature at a shorter 

temperature range (35 °C to 90 °C). Hence, an appropriate temperature was adopted for the 

normalization process. For another example, Salmonella enterica spp. can be inactivated by heating at 

60 °C for 60 mins or 121°C for 15 mins (Table S2); hence, the lower temperature-time (60 °C for 60 

mins) was adopted for calculation. Similarly, enterohemorrhagic E. coli O157: H7 can be inactivated 

by 55 °C for 40 minutes or 45 °C for 24 h (Table S2); therefore, 55 °C for 40 minutes was adopted for 

the inactivation reference as it is closer to the mean temperature (62.4 °C) of comparable scenarios 

(Table 1). 

                          [          ]        …Equation 1 

 Where, 

Tref (°C) = reference temperature from the literature at which the time-temperature inactivation tests 

were done; for enterohemorrhagic E.coli O157: H7 example, say 55 °C (from Table S2). 

Dref (min) = duration of heating at Tref for the experiment considering complete inactivation of the 

pathogen; for the above example, say 40 min (from Table S2). 

Zvalue (°C) = temperature rise necessary to reduce decimal reduction time by one logarithmic cycle; 

for the above example, a value of 9.15 °C is used which is the average from two studies considered 

which give a Zvalue of 6 °C and 12.3 °C for reference temperatures 65 °C and 50 to 70 °C, 

respectively. (Table S2). 

Tnew (°C) = 37 °C (mesophilic condition) 

New Dvalue (min) (for mesophilic condition) = 40 ÷ 10 
((37 - 55) / 9.15)

 = 3709 min (2.57 days). This New 

Dvalue is used to score (S1) pathogens (Equation 2). 

 Similarly, new Dvalue (min) for thermophilic conditions (55 °C) was 40 min (0.027 days); 

and for three pasteurisation conditions (60 °C, 70 °C, 90 °C) it was calculated as 11.36 min, 0.917 

min and 0.006 min, respectively. Hence, the bacteria could be fully inactivated through all AD and 

pasteurisation conditions. There are a lot of studies carried out using bacteria; however, there are gaps 
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in the literature for fungi, parasites and some of the viruses.  This is reflected in Table S2 as the „Z‟ 

value for all fungi, parasites and viruses was not available. Bozkurt et al. (2014) recommended the „Z‟ 

value for hepatitis A virus as 14.43 °C which was adopted for all viruses in the absence of data. The 

entire calculation for 91 pathogens is presented in Table S4                                                                                             

2.1.3. Screening strategy 

 A screening score was incorporated depending on the inactivation rate (S1) of the pathogen 

through the thermal process comparing the process duration (Table 1) and time required for full 

inactivation of the target pathogen (Fig. 2).  

If  the calculated „New Dvalue‟ is lower than the process duration mentioned in Table 1, S1 is set to 

0.001  

otherwise, 

    
                             

          
 …Equation 2 

Bio-aerosols, water, ingestion of soil through food and direct contact with infected animals 

were identified as major hazard pathways and the main pathogens which are typically transmitted 

through those four pathways were identified from the literature (Ashbolt 2004; Thomas et al. 2013; 

Arfken et al. 2015; Klous et al. 2016; Van Leuken et al. 2016; Conrad et al. 2017). Score S2 was 

given (Table S5) according to their transmission likelihood (L). If a pathogen can travel through four 

media such as air, soil or food, water, and animal contact it achieved the highest accumulated score of 

1 (0.25 for each pathway; for example, Cryptosporidium parvum). Otherwise, a score of 0.25 was 

given for each pathway (Fig. 2). 

 The mortality rate was selected to consider the severity on human health following infection; 

the score S3 represents the mortality rate from 0.1 to 1 (Fig. 2 and 3) where 0.1 stands for 10 % and 1 

corresponds to 100 % mortality in untreated patients. In the absence of a mortality rate, the score was 

proposed based on the number of annual human deaths globally (Fig. 3) where 0 to 100 deaths were 

assigned a low score and more than 10,000 deaths corresponded to a high score. Infection or illness 

cases per 100,000 population was another alternative approach as mortality rate and global deaths due 

to all 91 pathogens was not available. A low score was given where infection or illness was less than 
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1 per 100,000 population; the value between 1 to 99 was assigned a moderate score; and, a high score 

was given to 100 or more incidents per 100,000 population (Fig. 3). If any of these three criteria were 

not fulfilled, a low score (0.3) was given for the consistency of the model (Fig. 3). This step was 

introduced to consider the „severity‟ of the hazard within likelihood-severity (L × S) matrix. The final 

score S of the screening process was based on the multiplication of three individual scores S1, S2 and 

S3 (Equation 3). The scores were multiplied so the absence of any one score will result in the 

elimination of risk. 

          …Equation 3 

2.1.4. Comparison with indicator organisms 

In this part of the study, pathogens with the highest scores were cross-checked with the 

indicator pathogens. Pathogens were categorised mainly as bacteria, parasites and viruses. During this 

investigation, the authors considered parameters such as; mortality rate, host and reservoirs of 

pathogens, identification of vectors (secondary source), survival conditions (aerobic/ anaerobic/ 

facultative/ obligate), classification types (Gram-positive/ negative), spore/ egg forming potential, 

time-temperature condition for heat inactivation and incubation period (the period over which eggs, 

cells, etc. are incubated). Depending on these criteria, the appropriate indicators for the pathogens 

were assigned to check when indicator pathogens are inactivated through the process and assess the 

potential of survival of the top-ranked pathogens. 

2.2. Scenarios 

Three scenarios were considered, scenario 1 was based on Ireland where pathogens associated 

with foodborne outbreaks in that country only were evaluated. In scenario 2 pathogens associated with 

any foodborne outbreak across Europe were incorporated into the model (Table 4). Scenario 3 looked 

at the situation where there is no AD inactivation or pasteurisation (S1 = 0), which can be considered 

as representative of the application of raw FYM&S on to land. 
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2.2.1. Scenario 1: Model considering only foodborne illness in Ireland (Scenario A FOODIRE) 

The methodology for Scenario A FOODIRE is similar to the BM; the only alteration was made 

in the S2 score. Instead of four pathways (air, soil or food, water, and animal contact), only the 

foodborne (including drinking water) pathway was considered (Table 4). Drinking water was 

considered as it is sometimes considered as a part of the food chain. However, „waterborne‟ includes 

vast possibilities such as washing, swimming, drinking (with or without food), game/ sports activity 

etc (O‟Flaherty and Cummins 2017). The total number of confirmed cases/100,000 population 

(notification rates) in Ireland (Table 5) was collected for each target pathogens from the EFSA reports 

(European Food Safety Authority 2009, 2010, 2011, 2012, 2013, 2014, 2015a, 2015b, 2016, 2017). 

Data for Cryptosporidium was collected from the Health Protection Surveillance Centre (HPSC) 

(2018). An appropriate relative score S3IRE (ranging from 0.4 to 0.9; note of Table 5) was given 

depending on the „confirmed cases/100,000 population‟ range (note, Table 5). Next, the final score 

(S) was calculated as S1 × S2 × S3IRE similar to Equation 3. 

2.2.2. Scenario 2: Model considering only foodborne illness in Europe (Scenario B FOODEU) 

Comparing to the Scenario A FOODIRE model, an alteration was made to check the scenario in 

Europe. Hence, the total number of confirmed cases/100,000 population in Europe was determined 

(Table 6) and the same data source (EFSA reports) was used for this scenario (Table 4). The relative 

score S3EU (ranging from 0.4 to 0.9; note of Table 6) was given depending on the „confirmed 

cases/100,000 population‟ range (note, Table 6 referred). Similarly to Equation 3, the final score (S) 

was calculated as S1 × S2 × S3EU. 

2.2.3. Scenario 3: Model considering raw manure and slurry application without heat treatment 

and AD (Scenario C RAWFYM&S) 

In this scenario (Scenario C RAWFYM&S), a comparison was made between the digested and 

raw manure and slurry. This scenario looked at the fate of pathogens if no anaerobic digestion and 

pasteurisation were used on the pathogens. The S1 score has no influence in this regard as compared 

to the BM; which means the final score (S) was calculated as S2 multiplied by S3 only (Table 4). 
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3. Results 

3.1. Scores S1, S2, and, S3 

The list of pathogens and their susceptible host species, source, mortality information, 

available outbreak data are tabulated in Table S1. Table S3 highlights the various factors affecting 

survival (aerobic or anaerobic) of the pathogens, Gram +/ - ve, zoonotic nature, spore/ cyst/ egg 

forming ability, incubation period, growth/ re-growth ability, and infectious dose (organisms) which 

helped to select indicators (Table 2) for this study. The physical inactivation data (time-temperature) 

and the „Z‟ values were collected from available literature and summarised in Table S2. Applying 

Equation 1, new D values were calculated, and is presented in Table S4 for new temperature (Tnew) 

conditions (37 °C, 55 °C, 60 °C, 70 °C, and 90 °C). An appropriate score (S3) was given according to 

Equation 2 and the results are listed in Table S6 under the S1 column. Next, the second score S2 was 

evaluated accumulating the individual scores for different pathways and are described in Table S5. 

After this process, the third score (S3, Table S6) which is based on the mortality rate was applied to 

the pathogens comparing Table S1 and S2. 

3.2. The baseline model (BM) 

 The three scores (S1, S2 and S3) were multiplied to get the final score (S) as presented in 

Table S6 and Fig. 4. The maximum value was obtained for Cryptosporidium parvum (0.9). The 

highest-ranked 14 pathogens are plotted on a bar chart (Fig. 5) according to their order from high to 

low as Cryptosporidium parvum, Streptococcus pyogenes, Entamoeba histolytica, Salmonella 

enterica spp., Ascaris spp., enteropathogenic E. coli (EPEC), Mycobacterium spp., Salmonella typhi 

(followed by S. paratyphi), Giardia lamblia and Giardia intestinalis, Shigella spp., norovirus, 

Enterobacter spp., Clostridium spp. and Listeria monocytogenes. Fig. 6 indicated the final score (S) 

was less than 0.1 and for 48 pathogens whereas, only 11 pathogens scored more than 0.4. A 

comparison between the top-ranked pathogens (BM scenario) and the indicator pathogens is presented 

in Table 7. 

3.3. Scenarios 
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The food scenarios (Scenario A FOODIRE and Scenario B FOODEU) identified the top-ranked 

pathogens which are presented in the bar charts Fig. 7a and 7b, respectively. These pathogens are 

Cryptosporidium parvum, Salmonella enterica spp., Mycobacterium spp., E. coli enteropathogenic 

(EPEC), Toxoplasma gondii, Listeria monocytogenes, norovirus, Clostridium spp., Coxiella burnetti, 

Brucella spp., Yersinia enterocolitica, Echinococcus spp., Trichinella spp., Campylobacter coli, 

Vibrio spp. and hepatitis A-virus. The top 12 pathogens were ranked for Scenario C RAWFYM&S (Fig. 

7c) and these are, Cryptosporidium parvum, Campylobacter coli, Campylobacter jejuni, E-coli 

enterohamorrhagic (verotoxin) O157:H7, E. coli invasive & toxigenic, Salmonella enterica spp., 

norovirus, Salmonella typhi, Streptococcus pneumoniae, Streptococcus pyogenes, Entamoeba 

histolytica and rotavirus.  

4. Discussion 

4.1. Most hazardous pathogens (primary observation) 

Comparing the pathogens listed in Table 3 and S1 it can be concluded that pathogens such as 

Mycobacterium spp., Salmonella enterica spp., Listeria monocytogenes, Enterobacter spp., 

Clostridium spp. and E. coli are common both in human and animals. The common top-ranked 

pathogens which appeared in the BM (Fig. 5), Scenario A FOODIRE (Fig. 7a), Scenario B FOODEU 

(Fig. 7b), and Scenario C RAWFYM&S (Fig. 7c) models are Cryptosporidium parvum, Salmonella 

enterica spp., norovirus, Streptococcus pyogenes, Entamoeba histolytica, enteropathogenic E. coli 

(EPEC), Mycobacterium spp., Salmonella typhi followed by S. paratyphi, Clostridium spp., Listeria 

monocytogenes and Campylobacter coli. A comparison between results of A FOODIRE (Fig. 7a) and 

Scenario B FOODEU (Fig. 7b) highlights the difference between foodborne pathogens in Ireland and 

those found in the EU, with Cryptosporidium being noted as a greater issue in Ireland. According to 

the Health Protection Surveillance Centre (HPSC) (2018), there have been 400 to 600 cases (yearly) 

of cryptosporidiosis in Ireland since 2004. In the last scenario (Scenario C RAWFYM&S), no heat 

treatment was applied in terms of AD or pasteurisation; the additional pathogens of concern were 

Campylobacter jejuni, Vibrio spp., hepatitis A-virus, E. coli O157:H7, E. coli invasive & toxigenic, 
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Streptococcus pneumoniae and rotavirus. A comparison of Fig. 5 and 7c highlights the effect of M-

AD in reducing the final risk score for Salmonella typhi (and S. paratyphi) and norovirus. Other 

pathogens remained unchanged in terms of the ranking score; such as Cryptosporidium parvum, 

Streptococcus pyogenes, Entamoeba histolytica and Salmonella enterica spp. highlighting their heat 

resistance. 

4.2. Sensitivity analysis 

A sensitivity analysis was performed to find out the contribution of three scores S1, S2, and 

S3 to the final score S. The baseline model (BM) was used for sensitivity analysis (based on the top 

14 pathogens). The correlation coefficient (Spearman rank) of three different scores S1, S2 and S3 

were found as 0.25, 0.16 and 0.49, respectively (Fig. 8). Figure 8 represents a systematic evaluation of 

the influencing parameters on the final risk score. The bars extending to the right-hand side indicate a 

positive correlation between these model inputs and the final risk score. Consequently, the score due 

to the mortality rate (S3) was identified as the most sensitive parameter of the model followed by 

thermal inactivation (S1) and score for potential contamination pathways (S2). Again, in some 

pathogens, the final score (S) which was presented in the form of bars, could be visible only in 

mesophilic conditions (Fig. 4). Therefore, it reinforces the influence of the inactivation score (Smith 

et al. 2005) on this screening method. 

4.3. Comparison with indicator pathogens  

A comparison with indicator pathogens (Table 7) gave confidence as out of seven indicators 

(Table 2), six matched (except Enterococcus faecalis) with the top 14 screened pathogens. 

Enterococcus faecalis is an opportunistic pathogen which generally affects elderly patients with 

underlying disease and other immunocompromised patients who have been hospitalized for long 

periods (Public Health Agency of Canada 2019). According to Oprea and Zervos (2007), Enterococci 

are not classic foodborne pathogens. There are some animal pathogens other than those which are 

mentioned in Table S1 (AFBI and DAFM 2016). A list of pathogens (other than Table S1) causing 

disease in animals and not in humans are presented in Table 8. The model can also be used to assess 
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the pathogens of an animal health concern as a comparison between these pathogen and indicators 

used in the model can be readily carried out. In the absence of detailed thermal inactivation data (Tref, 

Dvalue and Zvalue), only a comparison was made to find out the indicators (final column of Table 8) 

and it is noted all indicators were already captured in this model (Table 7). Feline calicivirus (FCV), 

which is a non-enveloped virus, is a more heat resistant enteric virus (used as a surrogate for 

noroviruses) and generally causes illness in cats (Wong et al. 2010; Cook 2013; Cromeans et al. 

2014). However, it was not considered directly in the list of 91 pathogens as it is not likely to add a 

cat-carcass in an AD plant in Ireland. Finally,  the choice of an indicator is very important and this can 

be limited to case-specific scenarios; for example, Cryptosporidium is a good indicator of parasites 

(matured cells); however, Ascaris eggs were found to be more resilient (Kato et al. 2004) compared 

with Cryptosporidium oocysts at all sampling points. 

4.4. Recommendation 

Table 9 lists the pathogens (parasites) such as Ascaris, Ancylostoma duodenale, Toxocara 

spp., Trichinella spp., Entamoeba histolytica, Echinococcus multilocularis, and Echinococcus 

granulosus and the likely levels in urban wastewater and hospital waste; the presence of these 

pathogens in FYM&S is rare. It is not recommended to mix urban wastewater with FYM&S in an AD 

plant, hence limiting the likely presence of these parasites. Finally, this study looked to identify the 

top-ranked pathogens comparing common pathogens found in different scenarios such as BM, 

Scenario A FOODIRE (or Scenario B FOODEU) and Scenario C RAWFYM&S (Table 10). Table 10 

provides a prioritisation of the highest-ranking pathogens likely to be of concern and requiring 

vigilance. The pathogens which appeared more than once in the scenarios (Table 10) are 

Cryptosporidium parvum, Salmonella enterica spp., norovirus, Streptococcus pyogenes, Entamoeba 

histolytica, E. coli enteropathogenic (EPEC), Mycobacterium spp., Salmonella typhi followed by S. 

paratyphi, Clostridium spp., Listeria monocytogenes and Campylobacter coli (11 in total). In Ireland, 

the co-digestion of urban wastewater and FYM&S is unlikely (Singh et al. 2010). Hence, Entamoeba 

histolytica may be excluded at this final stage of the hazard identification for Ireland. 
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4.5. Limitations and future work 

i. Plant pathogens were not considered. 

ii. Detailed thermal inactivation data (Tref, Dvalue and Zvalue) of animal pathogens (which 

cause illness to animals only, not human) is unavailable; hence, comparison with indicators 

was the only possible way to investigate them. 

iii. The model can be improved in the future when the mortality rate for all 91 pathogens will be 

available and S3 score could be based on the mortality rate only. 

5. Conclusion 

 This study developed a simple risk ranking methodology based upon inactivation of 

pathogens during AD, hazard pathway routes and human mortality rates. Cryptosporidium parvum, 

Salmonella spp., norovirus, Streptococcus pyogenes, E. coli enteropathogenic (EPEC), 

Mycobacterium spp., Salmonella typhi (followed by S. paratyphi), Clostridium spp., Listeria 

monocytogenes and Campylobacter coli were found to be the most relevant (top 10) pathogens in 

relation to potential risk from spreading anaerobic digestate on agricultural land, specifically in 

Ireland. The score corresponding to the mortality rate (S3) was the most sensitive parameter (rank 

coefficient 0.49) to the final score S; followed by thermal inactivation score S1 (0.25) and potential 

contamination pathways S2 (0.16). A complete risk assessment of top-ranked pathogens can unify the 

data collected from the laboratory and field experiments into comprehensible statistics and predict 

potential risk which could help relevant agencies and government authorities to take the necessary 

steps to identify the most sensitive pathways or processes responsible for the overall risk and thus, act 

to minimise potential risk. 
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Fig. 1. Observed human disease outbreaks in Europe (last 20 years)
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Fig. 2. Flow diagram of the screening method 

*  Reference (Carrington 2001; Jones and Martin 2003; Lepeuple et al. 2004; WHO 2008; Bøtner and 

Belsham 2012; Longhurst et al. 2013; Torgerson et al. 2015) 
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Fig. 3. Adopted strategy for S3 scoring 
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Fig. 4. The result of the screening model with five different conditions (BM)
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Fig. 5. Ranking of top 14 pathogens based on qualitative screening process (BM) 
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Fig. 6. Bin distribution of the final score (S)
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c) Scenario C RAWFYM&S 

Fig. 7. Ranking of top pathogens in different scenarios 
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Fig. 8. The correlation coefficient (Spearman rank) of three different scores S1, S2 and S3 for 

the top 14 pathogens (BM) 
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Table 1: Time-temperature conditions studied 
Number Name Description Time Temperature 

1 M-AD Mesophilic AD 4 days  37 °C 

2 T-AD Thermophilic AD 4 days 55 °C 

3 Pas 1 Irish pasteurisation 4 days 60 °C 

4 Pas 2 EU pasteurisation 60 min 70 °C 

5 Pas 3 Higher pasteurisation 60 min 90 °C 
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Table 2: List of commonly used indicator pathogens 
Name Indicator for Reference 

Escherichia coli Gram -ve, non-spore forming coliform bacteria (Johansson et al. 2005) 

Salmonella senftenberg Gram - ve, non-spore forming bacteria (Wheeler et al. 1943; Mocé-llivina et al. 

2003) 

Enterococcus faecalis Gram + ve, non-spore forming bacteria (McFeters et al. 1974; Mocé-llivina et al. 

2003; Sahlström 2003; Anderson et al. 

2005; Sidhu and Toze 2009) 

Clostridium spp. Gram + ve, spore-forming bacteria (Payment and Franco 1993; Ferguson et al. 

1996; Fewtrell and Bartram 2001) 

Mycobacterium spp. Acid-fast thermoresistant bacteria (Deb et al. 2009) 

Feline calicivirus (FCV) Virus. Non-envelope virus; more heat resistant. 

Enteric virus (gene levels of noroviruses) 

(Wong et al. 2010; Cook 2013; Cromeans 

et al. 2014) 

Cryptosporidium parvum Parasites (Harwood et al. 2005) 

 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

44 

 

Table 3: Animal diseases found in Ireland and typical symptoms (source: DAFM) 
Diseases Pathogens Relative frequency of 

population deaths (%) 

in 2016 

Cattle 

Gastrointestinal infection 

(Enteritis and Parasitic) 

Bovine Diarrhoeal Virus, Salmonella, Liver fluke, 

Rumen fluke, gut worms (stomach and intestinal) 

12 

Respiratory infections 

(pneumonia, 

pleuropneumonia and 

parasitic 

bronchitis) 

Mycobacterium, Bovine respiratory syncytial virus (RSV), 

Trueperella pyogenes, Mannheimia haemolytica, Dictyocaulus 

spp., Mycoplasma bovis, Pasteurella multocida, bovine 

herpesvirus, Histophilus somni 

17 

Systemic infection Escherichia coli 5 

Clostridial infection Clostridium novyi, Cl. Chauvoei, Cl. Sordellii, Cl. perfringens, 

Cl. septicum, Cl. perfringens, Cl. Botulinum 

4 

Cardiac infection Trueperella pyogenes 9.5 

Liver disease Listeria monocytogenes, Liver fluke 3.5 

Bovine abortion Trueperella pyogenes, Salmonella Dublin, Bacillus 

licheniformis, Listeria moncytogenes, Aspergillus spp. 

7.1, 4.8, 4.1, 2.9, 0.6  

Bovine mastitis E. coli, Staphylococcus aureus, Streptococcus uberis 8, 26.8, 12 

Sheep 

Parasitic disease Teladorsagia (Ostertagia) circumcincta, Haemonchus 

contortus, Trichostrongylus spp, Nematodirus battus 

13 

Respiratory infections Mannheimia haemolytica, Less commonly (Pasteurella 

multocida, Trueperella pyogenes, Bibersteinia trehalosi and 

Mycoplasma ovipneumonae) 

12 

Septicaemia Bibersteinia trehalosi 15 

Clostridial and Kidney 

disease 

Clostridium perfringens, Clostridium difficile 7 

Enteric disease rotavirus and coronavirus 7 

Ovine abortion Toxoplasma gondii, Chlamydophila abortus, E. coli, Salmonella 40.2, 26.1, 16.5, 0.8, 
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Dublin, Trueperella pyogenes, Listeria spp., Streptococcus spp. 4.4, 4.0, 2.0 

Pig 

Pneumonia Pasteurella multocida, Mycoplasma hyopneumoniae, 

Actinobacillus pleuropeumoniae, Trueperella pyogenes, Swine 

influenza virus 

29 

Colibacillosis and Enteric 

infection 

E. coli, Salmonella, Clostridium perfringens, Clostridium 

difficile 

22 

Septicaemia Klebsiella pneumoniae, Streptococcus suis, Listeria 

monocytogenes, E. coli 

12 

Nervous disease Streptococcus suis  5 

Poultry 

Septicaemia Escherichia coli, Erysipelothrix rhusiopathiae 26 

Digestive Erysipelothrix rhusiopathiae, Brachyspira spp., adenovirus 6.5 

Musculoskeletal NA 8 

Respiratory Adenovirus 9 

Parasitic disease Dermanyssus gallinae 15 
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 Table 4: Scenarios considered 

Number Name Description Difference from BM Final score S 

1 Scenario A FOODIRE Model considering only 

foodborne illness in Ireland 

S3 based on foodborne illness in 

Ireland (S3IRE) 

S1 × S2 × S3IRE 

2 Scenario B FOODEU Model considering only 

foodborne illness in the Europe 

S3 based on foodborne illness in the 

Europe (S3EU) 

S1 × S2 × S3EU 

3 Scenario C RAWFYM&S Model considering raw 

FYM&S application without 

heat treatment and AD 

No S1, only S2 and S3 S2 × S3 

Note: The final score S for baseline model (BM) was calculated as S1 × S2 × S3 (Equation 3).
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Table 5: Pathogens considered for Scenario A FOODIRE 

Number Pathogens 

Number of confirmed human cases in Ireland Total number of confirmed cases/100,000 population (notification rates) * 

Avg. value Score S3IRE
1 

2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 

1 Campylobacter spp. 2511 2,453 2,593 2,288 2391 2433 1660 1810 1752 1885 53.1 53 56.3 49.8 52.17 54.3 37.15 40.67 39.8 43.7 47.999 0.9 

2 Salmonella spp. 299 270 259 326 309 311 349 335 447 440 6.3 5.8 5.6 7.1 6.7 6.9 7.8 7.5 10.2 10.2 7.41 0.8 

3 Yersinia spp. 3 13 5 4 2 6 3 3 3 6 0.06 0.28 0.11 0.09 0.04 0.13 0.07 0.07 0.1 0.1 0.105 0.7 

4 E. coli 737 598 572 564 412 275 197 237 213 115 15.6 12.92 12.42 12.29 8.99 6.14 4.41 5.33 4.8 2.7 8.56 0.8 

5 Listeria monocytogenes 13 19 15 8 11 7 10 10 13 21 0.28 0.41 0.33 0.17 0.24 0.16 0.22 0.22 0.3 0.5 0.283 0.7 

6 Coxiella burnetii 6 4 0 0 5   9 17     0.13 0.09 0 0 0.11   0.2 0.4     0.132 0.7 

7 Echinococcus spp. 2 0 0 1 1 0 1 1 2 0 0.04 0 0 0.02 0.02 0 0.02 0.02 0 0 0.012 0.6 

8 Brucella spp. 2 0 3 1 2 1 1 0 2 7 0.04 0 0.07 0.02 0.04 0.02 0.02 0 < 0.1 0.2 0.045 0.6 

9 Trichinella spp. 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 < 0.1 0.09 0.6 

10 Mycobacterium spp. 3 5 3 6 4 6 7 11 5 5 0.06 0.11 0.07 0.13 0.08 0.13 0.16 0.25 0.11 < 0.1 0.122 0.7 

11 Toxoplasma gondii 0 1 0 1 1   1 37     0 1.5 0 1.5 1.4   1.36 0.83     0.941 0.7 

12 Vibrio spp.                                         0.001 0.5 

13 Clostridium spp.                                         0.001 0.5 

14 Norovirus             50 28                 1.1 0.616     0.858 0.7 

15 Hepatitis A                                         0.001 0.5 

16 Cryptosporidium    439 394 514 556 428 294 445 416 609   10.38 9.31 12.15 13.14 10.12 6.95 10.52 9.83 14.4 10.755 0.9 

Note: 

1. Scale for selecting score S3IRE  based on the total number of confirmed cases/100,000 population (notification rates) 

2. Iceland, Norway, Switzerland are excluded; no special agreement for data 

3. Black cells represent unavailability of data in the report 

4.  Only Cryptosporidium data has been collected from The Health Protection Surveillance Centre (HPSC) (2018) 

 

* Number of confirmed cases/100,000 population range Score S3IRE 

100 10 0.9 

9.9 1 0.8 

0.99 0.1 0.7 

0.099 0.01 0.6 

0.0099 0.001 0.5 

0.00099 0.0001 0.4 
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Table 6: Pathogens considered for Scenario B FOODEU 

Number Pathogens 

Number of confirmed human cases in the EU Total number of confirmed cases/100,000 population (notification rates) * 
Avg. 

value 

Score 

S3EU
1 

2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 

1 Campylobacter spp. 246307 232134 236818 214710 214300 220209 215397 198725 190579 200980 66.3 62.9 66.5 61.4 61.7 50.28 48.56 45.57 40.7 45.2 54.911 0.9 

2 Salmonella spp. 94530 94597 92012 87753 94278 95548 101037 110181 134580 153852 20.4 20.9 20.7 20.3 21.9 20.7 21.5 24 26.4 31.1 22.79 0.9 

3 Yersinia spp. 6861 6928 6435 6352 6215 7017 6780 7578 8356 8803 1.82 1.91 1.83 1.92 1.93 1.63 1.58 1.65 1.8 2.8 1.887 0.8 

4 E. coli 6378 5929 5900 6042 5680 9485 3656 3583 3159 3271 1.82 1.68 1.75 1.8 1.7 1.93 0.83 0.75 0.7 0.6 1.356 0.8 

5 Listeria monocytogenes 2536 2206 2242 1883 1720 1476 1601 1654 1425 1581 0.47 0.43 0.46 0.39 0.36 0.32 0.35 0.36 0.3 0.3 0.374 0.7 

6 Coxiella burnetii 1057 822 780 647 518 
 

1414 1988 1660 605 0.16 0.18 0.18 0.15 0.12 
 

0.36 0.51 0.5 
 

0.27 0.7 

7 Echinococcus spp. 772 883 820 805 865 781 756 775 909 972 0.2 0.2 0.19 0.18 0.2 0.18 0.16 0.18 0.2 0.2 0.189 0.7 

8 Brucella spp. 516 437 462 498 503 330 356 404 735 639 0.12 0.09 0.09 0.1 0.1 0.07 0.07 0.08 0.1 0.1 0.092 0.6 

9 Trichinella spp. 101 156 324 217 301 268 223 750 670 787 0.02 0.03 0.06 0.04 0.06 0.05 0.05 0.16 0.1 0.2 0.077 0.6 

10 Mycobacterium spp. 170 181 167 144 132 132 165 134 123 113 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 < 0.1 0.031 0.6 

11 Toxoplasma gondii 47 288 258 213 144 
 

21 289 11 16 1.57 8.27 7.4 6.2 4.2 
 

0.56 0.65 
  

4.121 0.8 

12 Vibrio spp. 76 29 
     

17 
  

< 0.01 < 0.01 
        

0.009 0.5 

13 Clostridium spp. 49 60 1727 2009 1729 1050 795 1704 857 
 

0.01 0.01 0.04 0.06 0.03 0.03 0.02 0.03 0.03 
 

0.028 0.6 

14 Norovirus 11993 13536 3580 2023 13987 2529 6533 2670 3617 
 

0.08 0.06 
 

0.23 
      

0.123 0.7 

15 Hepatitis A 155 78 48 1444 116 7 13 2 104 
 

< 0.01 < 0.01 < 0.01 
       

0.009 0.5 

16 Cryptosporidium 62 120 24 65 11 20000 12700 
 

87 
 

< 0.01 < 0.01 < 0.01 
       

0.009 0.5 

Note: 

1. Scale for selecting score S3EU
  based on the total number of confirmed cases/100,000 population (notification rates) 

2. Iceland, Norway, Switzerland are excluded; no special agreement for data 

3. Black cells represent unavailability of data in the report 

 

* Number of confirmed cases/100,000 population range Score S3EU 

100 10 0.9 

9.9 1 0.8 

0.99 0.1 0.7 

0.099 0.01 0.6 

0.0099 0.001 0.5 

0.00099 0.0001 0.4 
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Table 7: List of top scored pathogens from screening method and comparison with the 

indicator pathogens (baseline model BM) 

Number Name Type Indicator 

1 Cryptosporidium parvum Parasites: Protozoa Itself 

2 Streptococcus pyogenes Gram +ve, aerobe, non-spore forming, non-

coliform bacteria 

Clostridium 

3 Entamoeba histolytica Parasites: Protozoa Cryptosporidium  

4 Salmonella enterica spp. Gram - ve, facultative anaerobe, non-spore 

forming, coliform bacteria 

Itself 

Salmonella senftenberg 

(more heat resistant) 

5 Ascaris spp. Parasites: helminths Cryptosporidium  

6 E. coli enteropathogenic (EPEC) Gram -ve, facultative anaerobe, non-spore 

forming coliform bacteria 

Itself 

7 Mycobacterium spp. Acid-fast thermoresistant bacteria Itself 

8 Salmonella typhi followed by S. 

paratyphi 

Gram - ve, facultative anaerobe, non-spore 

forming, coliform bacteria 

Itself 

Salmonella senftenberg 

(more heat resistant) 

9 Giardia lamblia, Giardia intestinalis Parasites: Protozoa Cryptosporidium 

10 Shigella spp. Gram - ve, facultative anaerobe, non-spore 

forming, coliform bacteria 

E. coli, Salmonella 

senftenberg 

11 Norovirus (surrogated by FCV) Virus Itself 

12 Enterobacter spp. Gram -ve, facultative anaerobe, non-spore 

forming coliform bacteria 

E. coli, Salmonella 

senftenberg 

13 Clostridium spp. Gram + ve, spore-forming bacteria Itself 

14 Listeria monocytogenes Gram +ve, facultative anaerobe, non-spore 

forming, non-coliform bacteria 

Itself/ Enterococcus 

faecalis 
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Table 8: List of pathogens (other than which are mentioned in Table S1) potentially representing an animal hazard (animal only, not human) and 

comparison with the indicators (AFBI and DAFM 2016) 

Number Pathogen name/ cause Name of hazard Classification 
Affected animals 

Indicator 
Cattle Sheep Pig Poultry 

1 Actinobacillus pleuropneumoniae Porcine pleuropneumonia Gram-negative, facultative anaerobic 
bacteria 

       Escherichia coli/ Salmonella enterica spp. 

2 African Swine Fever virus (ASFV)1 African Swine Fever (ASF) Virus         Feline calicivirus (FCV) 

3 Babesia spp. Babesiosis/ tick-borne disease protozoan parasite        Cryptosporidium parvum 

4 Bibersteinia trehalosi Pneumonia Gram-negative, facultative anaerobic 

bacteria 

      Escherichia coli/ Salmonella enterica spp. 

5 Bluetongue virus1 Bluetongue Disease (BT) Virus         Feline calicivirus (FCV) 

6 Bordetella bronchiseptica Infectious bronchitis Gram-negative, rod-shaped bacteria        Escherichia coli/ Salmonella enterica spp. 

7 Bovine Respiratory Syncytial virus Respiratory disease Virus        Feline calicivirus (FCV) 

8 Brachyspira spp. diarrheal disease Gram-negative, anaerobic bacteria        Escherichia coli/ Salmonella enterica spp. 

9 Chlamydophila abortus Abortion and fetal death in mammals Gram-negative bacteria        Escherichia coli/ Salmonella enterica spp. 

10 Circovirus 2 Affecting liver, lung etc. Virus        Feline calicivirus (FCV) 

11 Coccidian protozoa Parasitic/ Coccidiosis Protozoa        Cryptosporidium parvum 

12 Dermanyssus gallinae Affecting production and hen health Parasites: Red mite, Arthropoda        Cryptosporidium parvum 

13 Dictyocaulus viviparus Parasitic pneumonia Parasites: helminths        Ascaris/ Cryptosporidium parvum 

14 Echinostomida spp. Paramphistomosis Parasites: helminths        Ascaris/ Cryptosporidium parvum 

15 Eimeria spp. Coccidiosis protozoan parasites       Cryptosporidium parvum 

16 Erysipelothrix rhusiopathiae2 Erysipelas Gram-positive, facultative anaerobic 

bacteria 

       Enterococcus faecalis 

17 Fasciola spp./ liver fluke Chronic fasciolosis Parasites: helminths        Ascaris/ Cryptosporidium parvum 

18 Herpesvirus Neoplasia/ Marek's disease Virus       Feline calicivirus (FCV) 

19 Histophilus somni Bovine respiratory disease Gram-negative, facultative anaerobic 
bacteria 

       Escherichia coli/ Salmonella enterica spp. 

20 Mannheimia haemolytica Respiratory disease Gram-negative, anaerobic bacteria       Escherichia coli/ Salmonella enterica spp. 

21 Mycoplasma spp. Pneumonia Gram-positive bacteria      Clostridium/ Enterococcus faecalis 

22 Nematode (Roundworms) Parasitic gastroenteritis Parasites: helminths        Ascaris/ Cryptosporidium parvum 

23 Newcastle Disease virus1 Newcastle Disease Virus         Feline calicivirus (FCV) 

24 Pasteurella spp. Septicaemia Gram-negative, facultative anaerobic 
bacteria 

     Escherichia coli/ Salmonella enterica spp. 

25 Retrovirus1 Enzootic Bovine Leukosis (EBL) Virus         Feline calicivirus (FCV) 

26 Rumen fluke Liver fluke disease Parasites: helminths       Ascaris/ Cryptosporidium parvum 

27 Trueperella pyogenes Abscesses, mastitis, metritis, and 
pneumonia 

Gram-positive, facultative anaerobic 
bacteria 

     Enterococcus faecalis 

Note: 

1. The health status of animals on the island of Ireland benefits from our island status and the geographical buffer provided by Great Britain and Western Europe 

2. Zoonotic 
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Table 9: Likely levels and sources of parasites can be found in urban wastewater and 

hospital waste 
Pathogen name Likely levels Unit Source Reference 

Ascaris 0.7 to 13.33 eggs l -1 Wastewater (Amahmid et al. 1999) 

10.08 to 24.36 Urban raw wastewater (Maya et al. 2006; Hatam-

Nahavandi et al. 2015) 

1344 to 4116 Animal wastewater 

Ancylostoma 
duodenale 

100-150 eggs g -1 Affected human stool (Anderson and Schad 1985) 

Mean intensity of 

infection was 250.1 

± 64.4 

Affected human stool (Reynoldson et al. 1997) 

Toxocara spp. 0 - 4.35 eggs g -1 Sand sample contaminated with 

faeces 

(Uga 1993) 

mean 4.24 ± 4.62 

and median 2.17 ± 

5.92 

Hair sample of contaminated dogs (Devoy Keegan and Holland 

2010) 

Trichinella spp. 2 to 295 larvae g -1 Contaminated meat (Teunis et al. 2012) 

Entamoeba 

histolytica 

2.5 × 10^2 to 5.0 × 

10^2 

cysts l -1 Wastewater treatment plant influent (Sabbahi et al. 2018) 

39 - 308 cysts g -1 Faecal sample collected from infected 

patients in hospitals 

(Voupawoe 2016) 

Echinococcus 

multilocularis 

20 -140  eggs g -1 Faecal sample of infected dog; mostly 

red fox and racoon dogs; very rare 

disease in Europe 

(Allan et al. 1992; Conraths 

and Deplazes 2015) 

Echinococcus 
granulosus 
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Table 10: Final comparison checklist and selection of top-ranked pathogens 

Number Pathogens 

B
M

 

S
ce

n
a

ri
o

 A
 F

O
O

D
IR

E
 o

r 

S
ce

n
a

ri
o

 B
 F

O
O

D
E

U
  

S
ce

n
a

ri
o

 C
 R

A
W

F
Y

M
&

S
 

SUM 

1 Cryptosporidium parvum 1 1 1 3 

2 Salmonella enterica spp. 1 1 1 3 

3 Norovirus 1 1 1 3 

4 Streptococcus pyogenes 1 
 

1 2 

5 Entamoeba histolytica 1   1 2 

6 E. coli enteropathogenic (EPEC) 1 1  2 

7 Mycobacterium spp. 1 1  2 

8 Salmonella typhi followed by S. paratyphi 1  1 2 

9 Clostridium spp. 1 1  2 

10 Listeria monocytogenes 1 1  2 

11 Campylobacter coli  1 1 2 

12 Ascaris spp. 1     1 

13 Giardia lamblia, Giardia intestinalis 1 
  

1 

14 Shigella spp. 1 
  

1 

15 Enterobacter spp. 1 
  

1 

16 Toxoplasma gondi 
 

1 
 

1 

17 Brucella spp. 
 

1 
 

1 

18 Coxiella burnetti 
 

1 
 

1 

19 Echinococcus spp.   1   1 

20 Yersinia enterocolitica 
 

1 
 

1 

21 Campylobacter jejuni 
  

1 1 

22 Vibrio spp. 
  

1 1 

23 Hepatitis A-virus 
  

1 1 

24 E-coli O157:H7 
  

1 1 

25 E-coli invasive & toxigenic 
  

1 1 

26 Streptococcus pneumoniae 
  

1 1 

27 Rotavirus     1 1 
Note: Highlighted pathogens are present in municipal wastewater only (Table 13) and therefore not considered. 
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 Health risks from spreading animal waste and/ or anaerobic digestate. 

 Semi-quantitative screening tool developed to rank pathogens. 

 Scoring pathogens on thermal survivability, exposure pathways, severity or human 

mortality rate in untreated patients. 
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