132 research outputs found

    Multifunctional photo/thermal catalysts for the reduction of carbon dioxide

    Get PDF
    The photochemical fixation of CO2 to energy rich products for solar energy storage or feedstock chemicals is an attractive, albeit daunting, challenge. The overall feasibility of CO2 conversion is limited by the availability of efficient photo-active materials that meet the energetic requirements for CO2 reduction and are optically matched to the solar spectrum. Surface modification of TiO2 with earth abundant metal oxides presents one approach to develop visible active photocatalysts through band gap narrowing, while providing catalytic sites to lower the activation energy for CO2 reduction. In this work density functional theory was used to model the effect of surface modification of rutile and anatase using MnOx nanoclusters. The results indicate the formation of inter-band gap states following surface modification with MnOx, but surface water can change this. Oxygen vacancies are predicted to form in supported MnOx and the interaction with CO2 was investigated. MnOx-TiO2 was synthesized and characterised using surface analytical methods and photoelectrochemistry. The interaction of CO2 with the materials under irradiation was probed using in-situ FTIR to interrogate the role of oxygen vacancies in CO2 binding and reaction. These results provide insights into the requirements of a multifunctional catalyst for CO2 conversion

    Synthesis of the Ti-Silicate Form of BEC Polymorph of B-Zeolite Assisted by Molecular Modeling

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/jp805400u Published Work, see http://pubs.acs.org/page/policy/articlesonrequest/index.html[EN] The K(+) free pure silica form of polymorph C (BEC) of beta-zeolite has been synthesized with a cationic organic structure directing agent (SDA) that was predicted best, out of a series of nine potentials, by means of modeling techniques. On the bases of this synthesis method, the Ti-BEC zeolite has been obtained which owing to the pore topology and dimensions shows a higher epoxidation activity than the Ti-beta-polymorph either with H(2)O(2) or organic peroxides as oxidants.The authors thank the CICYT for financial support (Project MAT 2006-14274-CO2-01). G.S. thanks "Centro de Calculo de la Universidad Politecnica de Valencia" for the use of their computational facilities. M.M. and P.S. thank ITQ for a scholarship. We also thank intramural project CRENATUM.Moliner Marin, M.; Serna Merino, PM.; Cantin Sanz, A.; Sastre Navarro, GI.; Díaz Cabañas, MJ.; Corma Canós, A. (2008). Synthesis of the Ti-Silicate Form of BEC Polymorph of B-Zeolite Assisted by Molecular Modeling. The Journal of Physical Chemistry C. 112(49):19547-19554. https://doi.org/10.1021/jp805400uS19547195541124

    The Reproductive Revolution

    Get PDF
    Este texto fue publicado en 2009 por The Sociological Review. Rogamos que, a efectos de divulgación, docencia y cita bibliográfica se acuda a la publicación impresa (u online de la propia revista) y la cita sea esta: MacInnes, J., Pérez Díaz, J. (2009), "The reproductive revolution" The Sociological Review 57 (2): 262-284. Su versión html puede encontrarse en esta dirección:http://www3.interscience.wiley.com/cgi-bin/fulltext/122368561/HTMLSTART Quienes estén interesados en ampliar la información sobre nuestra Teoría de la Revolución Reproductiva pueden visitar la página web siguiente: http://www.ieg.csic.es/jperez/pags/RRweb/RRweb.htm También encontrarán en este mismo repositorio otra publicación con unaexposición en castellano de las mismas ideas y publicada en la REIS bajo el título “La tercera revolución de la modernidad: la reproductiva”.We suggest that a third revolution alongside the better known economic and political ones has been vital to the rise of modernity: the reproductive revolution, comprising a historically unrepeatable shift in the efficiency of human reproduction which for the first time brought demographic security.As well as highlighting the contribution of demographic change to the rise of modernity and addressing the limitations of orthodox theories of the demographic transition, the concept of the reproductive revolution offers a better way to integrate sociology and demography. The former has tended to pay insufficient heed to sexual reproduction, individual mortality and the generational replacement of population, while the latter has undervalued its own distinctive theoretical contribution, portraying demographic change as the effect of causes lying elsewhere. We outline a theory of the reproductive revolution, review some relevant supporting empirical evidence and briefly discuss its implications both for demographic transition theory itself, and for a range of key social changes that we suggest it made possible: the decline of patriarchy and feminisation of the public sphere, the deregulation and privatisation of sexuality, family change, the rise of identity, ‘low’ fertility and ‘population ageing’.Peer reviewe
    corecore