3,042 research outputs found

    Non-LTE radiative transfer in cool stars. Theory and applications to the abundance analysis for 24 chemical elements

    Full text link
    The interpretation of observed spectra of stars in terms of fundamental stellar properties is a key problem in astrophysics. For FGK-type stars, the radiative transfer models are often computed using the assumption of local thermodynamic equilibrium (LTE). Its validity is often questionable and needs to be supported by detailed studies, which build upon the consistent framework of non-LTE. In this review, we outline the theory of non-LTE. The processes causing departures from LTE are introduced qualitatively by their physical interpretation, as well as quantitatively by their impact on the models of stellar spectra and element abundances. We also compile and analyse the most recent results from the literature. In particular, we examine the non-LTE effects for 24 chemical elements for six late-studied FGK-type stars.Comment: 19 pages, accepted for publication as a chapter in "Determination of Atmospheric Parameters of B, A, F and G Type Stars", Springer (2014), eds. E. Niemczura, B. Smalley, W. Pyc

    Electronic structure and optical properties of metallic nanoshells

    Full text link
    The electronic structure and optical properties of metallic nanoshells are investigated using a jellium model and the Time Dependent Local Density Approximation (TDLDA). An efficient numerical implementation enables applications to nanoshells of realistic size with up to a million electrons. We demonstrate how a frequency dependent background polarizability of the jellium shell can be included in the TDLDA formalism. The energies of the plasmon resonances are calculated for nanoshells of different sizes and with different dielectric cores, dielectric embedding media, and dielectric shell backgrounds. The plasmon energies are found to be in good agreement with the results from classical Mie scattering theory using a Drude dielectric function. A comparison with experimental data shows excellent agreement between theory and the measured frequency dependent absorption spectra

    Non-LTE aluminium abundances in late-type stars

    Full text link
    Aluminium plays a key role in studies of the chemical enrichment of the Galaxy and of globular clusters. However, strong deviations from LTE (non-LTE) are known to significantly affect the inferred abundances in giant and metal-poor stars. We present NLTE modeling of aluminium using recent and accurate atomic data, in particular utilizing new transition rates for collisions with hydrogen atoms, without the need for any astrophysically calibrated parameters. For the first time, we perform 3D NLTE modeling of aluminium lines in the solar spectrum. We also compute and make available extensive grids of abundance corrections for lines in the optical and near-infrared using one-dimensional model atmospheres, and apply grids of precomputed departure coefficients to direct line synthesis for a set of benchmark stars with accurately known stellar parameters. Our 3D NLTE modeling of the solar spectrum reproduces observed center-to-limb variations in the solar spectrum of the 7835 {\AA} line as well as the mid-infrared photospheric emission line at 12.33 micron. We infer a 3D NLTE solar photospheric abundance of A(Al) = 6.43+-0.03, in exact agreement with the meteoritic abundance. We find that abundance corrections vary rapidly with stellar parameters; for the 3961 {\AA} resonance line, corrections are positive and may be as large as +1 dex, while corrections for subordinate lines generally have positive sign for warm stars but negative for cool stars. Our modeling reproduces the observed line profiles of benchmark K-giants, and we find abundance corrections as large as -0.3 dex for Arcturus. Our analyses of four metal-poor benchmark stars yield consistent abundances between the 3961 {\AA} resonance line and lines in the UV, optical and near-infrared regions. Finally, we discuss implications for the galactic chemical evolution of aluminium.Comment: 20 pages, 15 figures. Accepted for publication in A&

    Atomic Diffusion and Mixing in Old Stars V: A deeper look into the Globular Cluster NGC 6752

    Full text link
    Abundance trends in heavier elements with evolutionary phase have been shown to exist in the globular cluster NGC 6752 [Fe/H]=-1.6. These trends are a result of atomic diffusion and additional (non-convective) mixing. Studying such trends can provide us with important constraints on the extent to which diffusion modifies the internal structure and surface abundances of solar-type, metal-poor stars. Taking advantage of a larger data sample, we investigate the reality and the size of these abundance trends and address questions and potential biases associated with the various stellar populations that make up NGC6752. Based on uvby Str\"omgren photometry, we are able to separate three stellar populations in NGC 6752 along the evolutionary sequence from the base of the red giant branch down to the turnoff point. We find weak systematic abundance trends with evolutionary phase for Ca, Ti, and Fe which are best explained by stellar-structure models including atomic diffusion with efficient additional mixing. We derive a new value for the initial lithium abundance of NGC 6752 after correcting for the effect of atomic diffusion and additional mixing which falls slightly below the predicted standard BBN value. We find three stellar populations by combining photometric and spectroscopic data of 194 stars in the globular cluster NGC 6752. Abundance trends for groups of elements, differently affected by atomic diffusion and additional mixing, are identified. Although the statistical significance of the individual trends is weak, they all support the notion that atomic diffusion is operational along the evolutionary sequence of NGC 6752.Comment: 15 pages, 11 figures, 2 online table

    Emergence of ferroelectricity at the morphotropic phase boundary of ultrathin BiFeO3_3

    Full text link
    We demonstrate the robustness of polarization in ultrathin compressive strained BiFeO3_3 single layers and heterostructures during epitaxial thin-film growth. Using in-situ optical second harmonic generation (ISHG), we explore the emergence of ferroelectric phases at the strain-driven morphotropic phase boundary in the ultrathin regime. We find that the epitaxial films grow in the ferroelectric tetragonal (T-) phase without exhibition of a critical thickness. The robustness of this high-temperature T-phase against depolarizing-field effects is further demonstrated during the growth of capacitor-like (metal|ferroelectric|metal) heterostructures. Using temperature-dependent ISHG post-deposition, we identify the thickness-dependent onset of the monoclinic distortion in the T-matrix and trace the signature of the subsequent emergence of the strain-relaxed rhombohedral-like monoclinic phase. Our results show that strain-driven T-phase stabilization in BiFeO3_3 yields a prominent candidate material for realizing ultrathin ferroelectric devices.Comment: 5 pages, 3 figure

    Dynamics of passing-stars-perturbed binary star systems

    Get PDF
    In this work, we investigate the dynamical effects of a sequence of close encounters over 200 Myr varying in the interval of 10000 -- 100000 au between a binary star system and passing stars with masses ranging from 0.1M⊙M_{\odot} to 10M⊙M_{\odot}. We focus on binaries consisting of two Sun-like stars with various orbital separations a0a_{\scriptscriptstyle 0} from 50 au to 200 au initially on circular-planar orbits. We treat the problem statistically since each sequence is cloned 1000 times. Our study shows that orbits of binaries initially at a0a_{\scriptscriptstyle 0} = 50 au will slightly be perturbed by each close encounter and exhibit a small deviation in eccentricity (+0.03) and in periapsis distance (+1 and -2 au) around the mean value. However increasing a0a_{\scriptscriptstyle 0} will drastically increase these variances: up to +0.45 in eccentricity and between +63 au and -106 au in periapsis, leading to a higher rate of disrupted binaries up to 50% after the sequence of close encounters. Even though the secondary star can remain bound to the primary, ∼\sim20% of the final orbits will have inclinations greater than 10∘^{\circ}. As planetary formation already takes place when stars are still members of their birth cluster, we show that the variances in eccentricity and periapsis distance of Jupiter- and Saturn-like planets will inversely decrease with a0a_{\scriptscriptstyle 0} after successive fly-bys. This leads to higher ejection rate at a0a_{\scriptscriptstyle 0} = 50 au but to a higher extent for Saturn-likes (60%) as those planets' apoapsis distances cross the critical stability distance for such binary separation.Comment: Accepted for publication (MNRAS

    Atomic Diffusion and Mixing in Old Stars. III. Analysis of NGC 6397 Stars under New Constraints

    Full text link
    We have previously reported on chemical abundance trends with evolutionary state in the globular cluster NGC 6397 discovered in analyses of spectra taken with FLAMES at the VLT. Here, we reinvestigate the FLAMES-UVES sample of 18 stars, ranging from just above the turnoff point (TOP) to the red giant branch below the bump. Inspired by new calibrations of the infrared flux method, we adopt a set of hotter temperature scales. Chemical abundances are determined for six elements (Li, Mg, Ca, Ti, Cr, and Fe). Signatures of cluster-internal pollution are identified and corrected for in the analysis of Mg. On the modified temperature scales, evolutionary trends in the abundances of Mg and Fe are found to be significant at the 2{\sigma} and 3{\sigma} levels, respectively. The detailed evolution of abundances for all six elements agrees with theoretical isochrones, calculated with effects of atomic diffusion and a weak to moderately strong efficiency of turbulent mixing. The age of these models is compatible with the external determination from the white dwarf cooling sequence. We find that the abundance analysis cannot be reconciled with the strong turbulent-mixing efficiency inferred elsewhere for halo field stars. A weak mixing efficiency reproduces observations best, indicating a diffusion-corrected primordial lithium abundance of log {\epsilon}(Li) = 2.57 +- 0.10. At 1.2{\sigma}, this value agrees well with WMAP-calibrated Big-Bang nucleosynthesis predictions.Comment: 14 pages, 5 figures, accepted by Ap

    Stereospecific Synthesis of 2,3-Dimethoxynaphtho[1,2-b] indolizidine

    Get PDF
    (11aS)- and (11aR)-2,3-dimethoxy-naphtho[1,2-b]indolizidine (9a and 9b) were synthesized from optically pure L- and D-glutamic acid through several steps (scheme 1). All the intermediates of the route to the optical antipodes of 9 exhibit identical physical and spectral properties except the sign of the optical rotation values. The optical purity of the enantiomers of 6 was checked by 1H-NMR spectra using Eu(tfc)3, that of the enantiomers of 9 by HPLC-separation on a chiral column; the amount of racemization was less than 3% in 9a and 9b, respectively. Die (11aS)- und (11aR)-2,3-Dimethoxy-naphtho[1,2-b]indolizidine (9a) und (9b) wurden, ausgehend von optisch reiner L- bzw. D-Glutaminsäure, synthetisiert (Schema 1). Alle Zwischenprodukte auf dem Weg zu 9 zeigen identische physikalische und spektrale Eigenschaften mit Ausnahme des Drehsinns. Die optische Reinheit der 6-Enantiomere wurde durch 1H-NMRSpektroskopie mit Eu(tfc)3 bestimmt, die der 9-Enantiomere durch HPLCTrennung auf einer chiralen Säule: die Razemisierungsrate war in 9a und 9b <3%
    • …
    corecore