Stereospecific Synthesis of 2,3-Dimethoxy-naphtho[1,2-b]indolizidine ${ }^{1)}$

Gan Sun Lee ${ }^{*}$, Yong So Tho ${ }^{*}$, Sang Shul Shim ${ }^{*}$, Wan So Kim ${ }^{* *)}$, Ernst Eibler ${ }^{* * *)}$, and Wolfgang Wiegrebe ${ }^{* * *)}$
${ }^{*}$)Department of Chemistry, Korea Advanced Institute of Science and Technology, P. O. Box 150, Cheongryang, Seoul 130-650, Korea
${ }^{* *}{ }_{2 \text { nd }}$ Division of Organic Chemistry, Korea Research Institute of Chemical Technology, Daejon, Korea
${ }^{* * *)}$ Faculty of Chemistry and Pharmacy, University, D-8400 Regensburg

Received December 7, 1988
(11aS)- and (11aR)-2,3-dimethoxy-naphtho[1,2-b]indolizidine (9a and 9b) were synthesized from optically pure L - and D -glutamic acid through several steps (scheme 1). All the intermediates of the route to the optical antipodes of 9 exhibit identical physical and spectral properties except the sign of the optical rotation values. The optical purity of the enantiomers of 6 was checked by ${ }^{1} \mathrm{H}$-NMR spectra using Eu($\left.(\mathrm{ff})\right)_{3}$, that of the enantiomers of 9 by HPLC-separation on a chiral column; the amount of racemization was less than 3% in 9 a and 9 b , respectively.

Stereospezifische Synthese von 2,3-Dimethoxynaphtho[1,2-b]indolizidin Die (11aS)- und (1laR)-2,3-Dimethoxy-naphtho[1,2-b]indolizidine (9a) und (9b) warden, ausgehend on optisch reiner L- bzw. D-Glutaminsäure, synthetisiert (Schema 1). All Zwischenprodukte auf dem Neg ru 9 zeigen identische physikalische ind spektrale Eigenschaften mit Ausnahme does Drehsinns. Die optische Reinheit der 6-Enantiomere wurde durch ${ }^{1}$ H-NMRSpektroskopie mit Eu(ffc) 3 bestimmt, die der 9-Enantiomere durch HPLCTrennung auf einer chiralen Säule: die Razemisierungsrate war in 9a und 9b $<3 \%$.

1)

2)

3)

4)

Fig. 1. Normal and Eu(tfc) $\mathbf{3}_{3}$ shifted ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{6 a}$ and $\mathbf{6 b}$. 1) normal spectrum ($\mathbf{6 a = 6 b}$) 2) $\left.\mathbf{6 a + E u}(t f c)_{3}(\mathbf{3 : 1}) \mathbf{3}\right) \mathbf{6 b + E u}(\mathrm{tfc})_{\mathbf{3}}(\mathbf{3 : 1})$ 4) $6 a+6 b+E u(t f c)_{3}(1.5: 1 \cdot 5: 1)$.

Fig. 2. HPLC chromatogram of 9a and 9b on a chiral column (Bakerbond cov. 5(chiral); Eluent:i-PrOH/MeOH/n-Hexane 0.66/1.34/98(v/v/v); flow rate: $1.0 \mathrm{ml} / \mathrm{min}$; Detector:UV(254nm))

Scheme 1. The intermediates with subscription "a" were derived from L-glutamic acid, those with "b" from D-glutamic acid.

In spite of the intense progress in the synthesis of phenanthroindolizidine alkaloids especially about their stereospecific synthesis ${ }^{2,3}$ there is no report about the stereospecific synthesis of naphthoindolizidines. Several attempts ${ }^{4,5)}$ were reported concerning the formation of the naphtho[1,2-b]in-
dolizidine ring system. One paper ${ }^{4)}$ is concerned with the coupling of a naphthalene derivative with proline followed by intramolecular acylation giving no comment about the optical purity. The other one ${ }^{5)}$ reports Bisch-ler-Napieralsky cyclization of racemic 2-naphthylmethylpyrrolidines.

Rapoport et al. ${ }^{2)}$ reported on a stereospecific synthesis of tylophorine, a phenanthroindolizidine alkaloid, starting from optically pure glutamic acid diester but they did not prove in detail the optical purities.
We developed a stereospecific synthesis of the naphtho[1,2-b]indolizidine ring system 9 varying Rapoport's strategy ${ }^{2}$. The synthetic pathway is denoted in scheme 1.
2,3-Dimethoxy-6-bromomethylnaphthalene (2) ${ }^{6}$ was coupled with diisopropyl glutamate (L - or D-form) to afford the alkylated products $\mathbf{3 a}$ and $\mathbf{3 b}$, respectively. Compound 3 was cyclized to the pyroglutamate 4 which was hydrolyzed to the acid 5.

After converting the acid 5 to its acid chloride by oxalyl chloride, intramolecular Friedel-Crafts acylation ${ }^{7)}$ yielded the amide ketone 6 in good yield.
Amide ketone 6a, an important intermediate in this synthesis, was checked for its optical purity by comparison of its ${ }^{1} \mathrm{H}$-NMR spectrum in the presence of the chiral shift reagent $\mathrm{Eu}(\mathrm{tfc})_{3}{ }^{8)}$ with the corresponding spectrum of $\mathbf{6 b}$ (Fig. 1).

Striking differences in chemical shifts between the two optical antipodes 6a and 6b were observed in the methylene protons adjacent to the nitrogen atom. In $6 \mathbf{a}, \mathrm{H}_{\mathrm{A}}$ and H_{B} appeared at 4.95 and 6.55 ppm as doublets with the same coupling constant ($\mathrm{J}=18.0 \mathrm{~Hz}$). The $\mathrm{H}_{\mathrm{A}^{\prime}}$ and H_{B}, protons in 6b were shifted more downfield (5.10 and 6.75 ppm) than those of 6 a , evincing the formation of diastereomeric complexes with $\mathrm{Eu}(\mathrm{tfc})_{3}$.

Reduction to the corresponding alcohol 7 proceeded efficiently by treatment of 6 with L-Selectride. Deoxygenation of 7 was effected by reaction with SOCl_{2} followed by reduction with ZnCl_{2}-modified $\mathrm{NaBH}_{3} \mathrm{CN}^{9)}$ to afford amide 8. 8 was further reduced to 9 with LiAlH_{4}. Physical and spectral data were in agreement with the structures of all the intermediates, the optical rotation value for all the optical antipodes were identical within small error ranges with opposite signs. The optical rotation values are summarized in Table 1.
Final evidence for the naphthoindolizidine ring system was found in the mass spectra showing retro Diels-Alder fragmentation as base peaks in compounds 6-9 (Scheme 2).

Differences in ${ }^{1} \mathrm{H}$-NMR chemical shifts were not observed with $\mathrm{Eu}(\mathrm{ff})_{3}$ in 9 a and 9 b . This indicates that $\mathrm{Eu}(\mathrm{ff})_{3}$ can not form diastereomeric complexes because there are no lactam groups in these molecules.

Table 1: Optical rotation $\left([\alpha]_{D}^{20}\right)$ values of inantiomers

	$[\alpha]_{D}^{20}$	
cmpd.	$\underline{\mathrm{a}}$	$\underline{\mathrm{b}}$
Glu.	$+7.59\left(\mathrm{c}, 2.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	$-7.90\left(\mathrm{c}, 2.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\mathbf{3}$	$-23.30\left(\mathrm{c}, 1.03, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	$+23.17\left(\mathrm{c}, 1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\mathbf{4}$	$+36.95\left(\mathrm{c}, 2.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	$-36.83\left(\mathrm{c}, 1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\mathbf{5}$	$+54.10\left(\mathrm{c}, 0.61, \mathrm{THF}^{2}\right.$	$-53.00\left(\mathrm{c}, 0.61, \mathrm{THF}^{2}\right)$
$\mathbf{6}$	$-207.8\left(\mathrm{c}, 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	$+208.9\left(\mathrm{c}, 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\mathbf{7}$	$-75.90\left(\mathrm{c}, 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	$+77.60\left(\mathrm{c}, 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\mathbf{8}$	$+32.60\left(\mathrm{c}, 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	$-30.60\left(\mathrm{c}, 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\mathbf{9}$	$+129.5\left(\mathrm{c}, 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$	$-129.0\left(\mathrm{c}, 0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

Scheme 2 6. $\mathrm{A}+\mathrm{B}=\mathrm{O}, \mathrm{C}+\mathrm{D}=\mathrm{O} ; \mathrm{m} / \mathrm{z}=228$ 7. $\mathrm{A}=\mathrm{OH}, \mathrm{B}=\mathrm{H}, \mathrm{C}+\mathrm{D}=\mathrm{O}$; $\mathrm{m} / \mathrm{z}=230$ 8. $A=B=H, C+D=O ; m / z=214$ 9. $A=B=C=D=H ; m / z=214$

The optical antipodes 9a and 9b were successfully separated by HPLC on a chiral column, the result is denoted in Fig. 2. The amount of racemization in 9 a and 9 b was determined to be 2.4% and 2.2%, respectively, by integration of each peak. These values, in the authors' opinion, can be accepted for a stereospecific synthesis.
In a similar work about a phenanthroindolizidine synthe$\operatorname{sis}^{3)}$ using N -trifluoroacetylproline as starting material, the amount of racemization was reported to be $2-3 \%$.

Experimental Part

General remarks: m. ps. are uncorrected. - Elemental analysis: Microanalysis Laboratory, University of Regensburg. - UV-spectra: Uvikon 810 Kontron, MeOH . - IR-spectra (neat in NaCl cells or KBr pellets): Beckman Acculab 3. - ${ }^{1} \mathrm{H}$-NMR spectra: Varian EM 390 (90 MHz), or Bruker WM $250(250 \mathrm{MHz})$. - Mass spectra: Varian MAT CH 5. - Optical rotation $\left([\alpha]_{D}^{20}\right)$: Perkin-Elmer $241 \mathrm{MC}(589 \mathrm{~nm})$.

Diisopropyl(S)-N-[(2,3-dimethoxy-7-naphthyl)methyl]glutamate (3a)

To a stirred solution of 2,3-dimethoxy-6-hydroxymethylnaphthalene ${ }^{6}$) $(3.27 \mathrm{~g}, 0.018 \mathrm{M})$ in $\mathrm{CHCl}_{3}(150 \mathrm{ml})$ were added $\mathrm{Et}_{3} \mathrm{~N}(2.48 \mathrm{ml}, 0.018 \mathrm{M})$ and $\mathrm{PBr}_{3}(1.6 \mathrm{ml}, 0.018 \mathrm{M})$ at $0^{\circ} \mathrm{C}$. Stirring was continued for $30 \mathrm{~min} . \mathrm{H}_{2} \mathrm{O}$ $(150 \mathrm{ml})$ was added drop by drop during 30 min , then the org. layer was separated, washed with saturated NaCl solution (150 ml), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After 1 h the solution was filtered and the filtrate was evaporated in vacuo. The residue was dissolved in benzene (75 ml) and DMF (75 ml), and heated to $80^{\circ} \mathrm{C} . \mathrm{K}_{2} \mathrm{CO}_{3}$ (8.33 g) and diisopropyl (S)-glutamate (a) ($5.2 \mathrm{~g}, 0.0225 \mathrm{M}$) were added to the hot solution in one portion. Then the mixture was refluxed for 30 min , cooled to room temp. and $\mathrm{H}_{2} \mathrm{O}(400 \mathrm{ml})$ and ethyl acetate (400 ml) were added. The upper layer was separated and worked up as usual. Column chromatography (CC) (ethyl acetate : nhexane $1: 3$) afforded pure 3 a as a colorless liquid. Yield 6.12 g (93.8\%). $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{6}$ (431.5) Calc. C 66.8 H 7.71 N 3.3 Found C 66.8 H 7.44 N 3.3. - UV (MeOH): $\lambda_{\max }(\log \varepsilon)=323$ (3.53), 309 (3.41), 263 (3.77), 231 nm (4.84). - IR(film): 1730 (CO); $3260-3700 \mathrm{~cm}^{-1}$ (broad, NH). - ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.19\left(\mathrm{~d} ; \mathrm{J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}\right.$, isopropyl- $\left.\mathrm{CH}_{3}\right), 1.26(\mathrm{~d} ; \mathrm{J}=$ $6.6 \mathrm{~Hz}, 6 \mathrm{H}$, isopropyl- CH_{3}), $1.83(\mathrm{~s} ; 1 \mathrm{H},-\mathrm{NH}-), 1.73-2.10(\mathrm{~m} ; 2 \mathrm{H},-$ $\mathrm{CH}_{2}-$), $2.30-2.60\left(\mathrm{~m} ; 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.23\left(\mathrm{dd} ; \mathrm{J}_{1}=8.4 \mathrm{~Hz}, \mathrm{~J}_{2}=5.4 \mathrm{~Hz}, 1 \mathrm{H},-\right.$ $\mathrm{N}-\mathrm{CH}-$), 3.71 (d; J = $12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$ in $\mathrm{Ar}-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathrm{N}-$), 3.95 (d; J = 12.9 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ in $\left.\mathrm{Ar}-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathrm{N}-\right), 3.98\left(\mathrm{~s} ; 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 5.03(\mathrm{~m} ; 2 \mathrm{H}$, isopro-pyl-CH-), 7.10 (s; 2H, Ar-H), 7.32 (d; J = $10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.62$ (s; 1 H , Ar-H), 7.66 (d; J = $10.2 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H). - EI-MS: $\mathrm{m} / \mathrm{z}=431\left(2 \%, \mathrm{M}^{+}\right), 370$ (7), 343 (16), $201\left(100,\left(\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{4}\right)^{+}\right)$.

Diisopropyl(R)-N-[(2,3-dimethoxy-7-naphthyl)methyl]glutamate
Same procedure as for 3a using diisopropyl (R)-glutamate (b) instead of a. Yield 92.1%. - Physical and spectral data: identical with those of 3a, except the sign of optical rotation.

3a ($4.04 \mathrm{~g}, 9.37 \mathrm{mM}$) was dissolved in $\mathrm{MeOH}(150 \mathrm{ml})$ and glacial $\mathrm{AcOH}(21.3 \mathrm{ml})$. The mixture was refluxed for 5 h and evaporated in vacuo. Separation by CC (ethyl acetate : n-hexane 2:1) afforded 4a as a colorless solid. Yield $3.10 \mathrm{~g}(89.1 \%)$. - m.p. $106-107^{\circ} \mathrm{C}$. $-\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5}$ (371.4) Calc. C 67.9 H 6.78 N 3.6 Found C 68.0 H 6.90 N 3.8. - UV $(\mathrm{MeOH}): ~ \lambda \max (\log \varepsilon)=323(3.52), 309$ (3.39), 263 (3.81), $230 \mathrm{~nm}(4.73)$. - IR(KBr): $1703(\mathrm{CO}) ; 1727 \mathrm{~cm}^{-1}(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ $1.20\left(\mathrm{~d} ; \mathrm{J}=6.3 \mathrm{~Hz}, 6 \mathrm{H}\right.$, isopropyl- $\left.\mathrm{CH}_{3}\right), 1.73-2.77\left(\mathrm{~m} ; 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.83-$ $4.03(\mathrm{~m} ; 1 \mathrm{H},-\mathrm{CH}-\mathrm{N}-), 3.98\left(\mathrm{~s} ; 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.08\left(\mathrm{~d} ; \mathrm{J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ in $\left.\mathrm{Ar}-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathrm{N}-\right), 5.02(\mathrm{~m} ; \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}$, isopropyl-CH-), $5.20(\mathrm{~d} ; \mathrm{J}=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ in $\left.\mathrm{Ar}-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathrm{N}-\right), 7.08(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.12(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.20 (dd; $\left.\mathrm{J}_{1}=8.4 \mathrm{~Hz}, \mathrm{~J}_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.53(\mathrm{~d} ; \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H), 7.67 (d; J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$). - EI-MS: m/z=371 ($25 \%, \mathrm{M}^{+}$), 284 (5 , $\left.\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{C}_{3} \mathrm{H}_{7}\right)^{+}\right), 201\left(100,\left(\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{3}\right)^{+}\right)$.

Isopropyl(R)-N-[(2,3-dimethoxy-7-naphthyl)methyl]pyroglutamate (4b)
Cf. synthesis of 4a, using 3b instead of 3a. Yield 90.3\%. - Physical and spectral data: cf. 4a.

(S)-N-[(2,3-Dimethoxy-7-naphthyl)methyl]pyroglutamicacid (5a)

To a stirred solution of $4 \mathrm{a}(2.74 \mathrm{~g}, 7.3 \mathrm{mM}$) in dioxane (20 ml) and $\mathrm{MeOH}(20 \mathrm{ml})$ was added $2 \mathrm{~N}-\mathrm{KOH}(20 \mathrm{ml})$ at $0-5^{\circ} \mathrm{C}$. The temp. was raised to $20-25^{\circ} \mathrm{C}$ and the mixture was stirred for $1 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(150 \mathrm{ml})$ was dropped to it and the pH of the solution was adjusted to $3-4$ with $\mathrm{H}_{3} \mathrm{PO}_{4}$. After stirring for 30 min at $0-5^{\circ} \mathrm{C}$, the white crystals were filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and dried in vacuo. Yield 2.25 g (92.6%). - m.p. $220-221^{\circ} \mathrm{C}$. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{5}$ (329.4) Calc. C 65.6 H 5.82 N 4.3 Found C 65.5 H 5.91 N 4.0 . $-\mathrm{UV}(\mathrm{MeOH}): \lambda_{\max }(\log \varepsilon)=323(3.51), 309(3.36), 263(3.75), 230 \mathrm{~nm}$ (4.78). - IR (KBr): 1630 (CO, acid); 1722 (CO, amide); $2300-3200 \mathrm{~cm}^{-1}$ (broad, OH of $\mathrm{CO}-\mathrm{OH}$). $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right): \delta(\mathrm{ppm})=2.00-$ 2.67 (m; 4H, $-\mathrm{CH}_{2}-$), $3.87-4.03(\mathrm{~m} ; 1 \mathrm{H},-\mathrm{CH}-\mathrm{N}-), 3.98\left(\mathrm{~s} ; 6 \mathrm{H},-\mathrm{OCH}_{3}\right)$, 4.07 (d; J = $14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$ in $\mathrm{Ar}^{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathrm{N}-$), $5.23(\mathrm{~d} ; \mathrm{J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}$, H_{B} in $\mathrm{Ar}-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathrm{N}-$), $7.08(\mathrm{~s} ; 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.20(\mathrm{~d} ; \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.53 (s; 1H, Ar-H), 7.63 (d; J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.00-8.30$ (broad s; 1 H , $\mathrm{COOH})$. - EI-MS: $\mathrm{m} / \mathrm{z}=329\left(76 \%, \mathrm{M}^{+}\right), 284\left(8,(\mathrm{M}-\mathrm{COOH})^{+}\right), 273(5$, $\left.\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{CO}\right)^{+}\right), 201\left(100,\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{NO}_{3}\right)^{+}\right)$.

(R)-N-[(2,3-Dimethoxy-7-naphthyl)methyl]pyroglutamicacid (5b)

Cf. synthesis of 5a, using 4b instead of $\mathbf{4 a}$. Yield 91.2\%. - Physical and spectral data: of 5a.

(S)-2,3-Dimethoxynaphtho[1,2-b]-9,12-indolizidinedione (6a)

To a stirred solution of $5 \mathrm{a}(2.0 \mathrm{~g}, 6.08 \mathrm{mM})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ at $0-5^{\circ} \mathrm{C}$ were added DMF (1 drop) and oxalyl chloride ($0.67 \mathrm{ml}, 7.3 \mathrm{mM}$), and the reaction mixture was. refluxed for $2 \mathrm{~h} . \mathrm{SnCl}_{4}(1.45 \mathrm{ml}, 12.16 \mathrm{mM})$ was dropped for 10 min and reflux was continued for 4 h . To the cooled reaction mixture was dropped $3 \mathrm{~N}-\mathrm{HCl}(60 \mathrm{ml})$ and the org. layer was separated, washed with saturated NaCl solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was stirred with $\mathrm{MeOH}(20 \mathrm{ml})$ for 80 min . The precipitates formed were collected to afford $\mathbf{6 a}$ as a light yellow crystalline solid. Yield 1.57 (83.3\%). - m.p. $200-203^{\circ} \mathrm{C}$ (dec.). $-\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4}$ (311.3) Calc. C 69.4 H 5.50 N 4.5 Found C 69.6 H 5.46 N 4.3 . - UV (MeOH): $\lambda_{\max }(\log \varepsilon)=350(3.91), 220 \mathrm{~nm}(4.64)$. $-\mathrm{IR}(\mathrm{KBr}): 1685(\mathrm{CO}) ; 1700$ $\mathrm{cm}^{-1}(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.43-2.60\left(\mathrm{~m} ; 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.98$ (s; 3H, $-\mathrm{OCH}_{3}$), $4.05\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.23-4.50(\mathrm{~m} ; 1 \mathrm{H},-\mathrm{CH}-\mathrm{N}-), 4.48$ (d; J $=18.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$ in $\mathrm{Ar}^{2}-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathrm{N}$-), $5.32\left(\mathrm{~d} ; \mathrm{J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}\right.$ in $\mathrm{Ar}-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathrm{N}-$), 7.12 ($\left.\mathrm{s} ; 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.20(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.90(\mathrm{~d} ; \mathrm{J}$ $=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.08(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$. $\mathrm{EI}-\mathrm{MS}: \mathrm{m} / \mathrm{z}=311\left(77 \%, \mathrm{M}^{+}\right)$, $283\left(22,(\mathrm{M}-\mathrm{CO})^{++}\right), 185\left(21,\left(200-\mathrm{CH}_{3}\right)^{+}\right), 157\left(9,(185-\mathrm{CO})^{+}\right)$.

(R)-2,3-Dimethoxynaphtho[1,2-b]-9,12-indolizidinedione (6b)

Cf. synthesis of $\mathbf{6 a}$ using $\mathbf{5 b}$ instead of $\mathbf{5 a}$. Yield $\mathbf{8 5 . 4 \%}$.- Physical and spectral data: cf. 6a.

(11aS)-12-Hydroxy-2,3-dimethoxynaphtho[1,2-b]-9-indolizidinone (7a)

To a stirred solution of $6 \mathrm{a}(0.825 \mathrm{~g}, 2.65 \mathrm{mM})$ in THF $(32 \mathrm{ml})$ at $-70^{\circ} \mathrm{C}$ was added L -Selectride ($5.3 \mathrm{ml}, 5.3 \mathrm{mM}$) during 30 min . Stirring was continued for 2 h at that temp. The mixture was allowed to warm to $0^{\circ} \mathrm{C}$, then $2 \mathrm{~N}-\mathrm{KOH}(3 \mathrm{ml})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution (3 ml) were added and the reaction mixture was stirred for 30 min . at $0-5^{\circ} \mathrm{C}$. THF was evaporated in vacuo and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ and $\mathrm{EtOAc}(50 \mathrm{ml})$. Usual work-up of the EtOAc layer afforded 7 a as pale yellow crystals. Yield 0.69 (83\%). - m.p. $218-223^{\circ} \mathrm{C}$ (dec.). $-\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4}$ (313.4) Calc. C 69.0 H 6.11 N 4.5 Found C 68.6 H 6.17 N 4.2 . $-\mathrm{UV}(\mathrm{MeOH}): ~ \lambda \max (\log \varepsilon)$ $=325$ (3.56), 311 (3.43), 267 (3.73), $232 \mathrm{~nm}(4.78) .-\operatorname{IR}(\mathrm{KBr}): 1670$ (CO); $3418 \mathrm{~cm}^{-1}(\mathrm{OH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.80-2.65\left(\mathrm{~m} ; 4 \mathrm{H},-\mathrm{CH}_{2}-\right)$, $3.22(\mathrm{~d} ; \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.70-3.90(\mathrm{~m} ; 1 \mathrm{H},-\mathrm{CH}-\mathrm{N}), 3.95(\mathrm{~s} ; 3 \mathrm{H}$, $-\mathrm{OCH}_{3}$), $4.01\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.15\left(\mathrm{~d} ; \mathrm{J}=17.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ in $\mathrm{Ar}-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-$ N), 4.92 (d; J = $17.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ in Ar- $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathrm{N}$), 5.15 (dd; $\mathrm{J}_{1}=9.0 \mathrm{~Hz}$, $\left.\mathrm{J}_{2}=2.3 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{O}-\right), 7.03(\mathrm{~d} ; \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.06(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{Ar}-$ H), 7.45 (s; 1H, Ar-H), 7.63 (d; J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$). - EI-MS: m/z = 313 ($84 \%, \mathrm{M}^{+}$), $230\left(100,\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}\right)^{+}\right.$, retro Diels-Alder), 202 (50 , (230 $\left.(\mathrm{CO})^{+}\right), 187\left(18,\left(202-\mathrm{CH}_{3}\right)^{+}\right), 159\left(12,(187-\mathrm{CO})^{+}\right)$.
(11aR)-12-Hydroxy-2,3-dimethoxynaphtho[1,2-b]-9-indolizidinone (7b)
Cf. synthesis of $\mathbf{7 a}$ using $\mathbf{6 b}$ instead of $\mathbf{6 a}$. - Physical and spectral data: cf. 7 a .

(11aS)-2,3-Dimethoxynaphtho[1,2-b]-9-indolizidinone (8a)

To a stirred solution of $7 \mathrm{a}(0.55 \mathrm{~g}, 1.76 \mathrm{mM})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ was added $\mathrm{SOCl}_{2}(0.21 \mathrm{ml}, 2.11 \mathrm{mM})$ at $0^{\circ} \mathrm{C}$. Then it was stirred for 2 h at room temp. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ and THF (30 ml). In another vessel was prepared a ZnCl_{2} modified $\mathrm{NaBH}_{3} \mathrm{CN}$ solution using $\mathrm{NaBH} 3_{3} \mathrm{CN}(0.22 \mathrm{~g}, 3.52 \mathrm{mM})$ and freshly fused $\mathrm{ZnCl}_{2}(0.50 \mathrm{~g}, 3.52 \mathrm{mM})$ in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ according to the known procedure ${ }^{9}$. To this solution was added the reaction solution during 10 min at room temp., then it was stirred for 30 min . After cooling the mixture to $0-5^{\circ} \mathrm{C}$ saturated NaHCO_{3} solution (30 ml) was added drop by drop, then $\mathrm{Et}_{2} \mathrm{O}$ and THf were evaporated. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{ml})$ and the extract was washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$ and saturated NaCl solution (30 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was evaporated in vacuo and the residue was crystallized from acetone (10 ml) to afford $8 \mathbf{a}$ as a white crystalline powder. Yield $0.43 \mathrm{~g}(82 \%)$. - m.p. $219-222^{\circ} \mathrm{C}$ (dec.). $-\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}$ (297.4) Calc. C 72.7 H 6.44 N 4.7 Found C 72.6 H 6.56 N 4.3 . - UV $(\mathrm{MeOH}): ~ \lambda \max (\log \varepsilon)=325(3.41), 311$ (3.30), 276 (3.72), 228 nm (4.61). $-\mathbb{R}(\mathrm{KBr}): 1685 \mathrm{~cm}^{-1}(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.77-2.63(\mathrm{~m} ;$ $4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CO}$), 2.63-3.60 (m; 2H, $-\mathrm{CH}_{2}$), $3.70-4.03(\mathrm{~m} ; 1 \mathrm{H},-\mathrm{N}-$ $\mathrm{CH}-), 4.00\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.03\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.35(\mathrm{~d} ; \mathrm{J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}$, H_{A} in $\mathrm{Ar}-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathrm{N}-$), $5.05\left(\mathrm{~d} ; \mathrm{J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}\right.$ in $\mathrm{Ar}-\mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}}-\mathrm{N}-$), 7.07 (d; J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.14 ($\mathrm{s} ; 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.58$ (d; J $=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H). - EI-MS: $\mathrm{m} / \mathrm{z}=297\left(68 \%, \mathrm{M}^{+}\right), 282\left(3,\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}\right), 266(3,(\mathrm{M}-$ $\left.\mathrm{OCH}_{3}\right)^{+}$), $214\left(100,\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}\right)^{+}\right.$, retro Diels-Alder), 199 (8, (214$\left.\mathrm{CH}_{3}\right)^{+}$).
(11aR)-2,3-Dimethoxynaphtho[1,2-b]-9-indolizidinone (8b)

Cf. synthesis of 8a using 7b instead of 7a. Yield 84%. - Physical and spectral data: cf. 8a.

(11aS)-2,3-Dimethoxynaphtho[1,2-b]indolizidine (9a)

To a stirred solution of $8 \mathrm{a}\left(0.186 \mathrm{~g}, 6.26 \times 10^{-4} \mathrm{M}\right)$ in THF (10 ml) was added $\mathrm{LiAlH}_{4}(0.048 \mathrm{~g}, 1.25 \mathrm{mM})$ at $0-5^{\circ} \mathrm{C}$. The resulting suspension was refluxed for 1 h under N_{2}. Then it was cooled to $0^{\circ} \mathrm{C}$ and saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution (5 ml) was added cautiously. After stirring for 1 h at $0^{\circ} \mathrm{C}$, the solvent was evaporated in vacuo. Usual work-up afforded 9a as a pale yellow crystalline powder. Yield 0.15 g (87%). - m.p. $167-168^{\circ} \mathrm{C}$. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$ (283.4) Calc. C 76.3 H 7.47 N 4.9 Found C 76.4 H 7.61 N 4.8 . - UV (MeOH): $\lambda_{\max }(\log \varepsilon)=325$ (3.46), 311 (3.35), 269 (3.74), 229 nm (4.67). - IR(KBr): $1605 ; 1626 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$). $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm})=1.50-2.50\left(\mathrm{~m} ; 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 2.60-3.00(\mathrm{~m} ; 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}-), 3.20-$ $3.40\left(\mathrm{~m} ; 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 3.51\left(\mathrm{~d} ; \mathrm{J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ in $\mathrm{Ar}-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}^{-}}$ $\mathrm{N}-$), $3.98\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.01\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.23(\mathrm{~d} ; \mathrm{J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}$, H_{B} in $\mathrm{Ar}-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathrm{N}-$), $7.03(\mathrm{~d} ; \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.08(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.15 (s; 1H, Ar-H), 7.49 (d; J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H). - EI-MS: $\mathrm{m} / \mathrm{z}=283$ (33\%, M^{+}), 214 (100, ($\left.\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}\right)^{+}$, retro Diels-Alder), 199 (10, (214$\left.\mathrm{CH}_{3}\right)^{+}$.

(11aR)-2,3-Dimethoxynaphtho[1,2-b]indolizidine (9b)

Cf. synthesis of 9 a using $\mathbf{8 b}$ instead of $\mathbf{8 a}$. Yield 89%. - Physical and spectral data: cf. 9a.

References

1 G. S. Lee, Y. S. Cho, S. C. Shim, W. J. Kim, and W. Wiegrebe, Arch. Pharm. (Weinheim) 321, 662 (1988).
2 T. F. Buckley and H. Rapoport, J. Org. Chem. 48, 4222 (1983).
3 J. E. Nordlander and F. G. Njorge, J. Org. Chem. 52, 1627 (1987).
4 H. Budzikiewicz, L. Faber, E. G. Herrmann, F. F. Perrollaz, U. P. Schlunegger, and W. Wiegrebe, Liebigs Ann. Chem. 1979, 1212.
5 S. P. Gaur, P. C. Jain, and N. Anand, Ind. J. Chem. 21B, 46 (1982).
6 K. Y. Zee-Cheng, W. H. Nyberg, and C. C. Cheng, J. Heterocycl. Chem. 9, 805 (1972).
7 T. F. Buckley and H. Rapoport, J. Am. Chem. Soc. 103, 6157 (1981).
8 The ratio of $E u(t f c)_{3}$ and $6 \mathbf{a}$ (or $6 b$) was varied; the best result was obtained when $\mathrm{Eu}(\mathrm{tfc})_{3}: \mathbf{6 a}($ or 6 b$)=1: 3(\mathrm{w} / \mathrm{w})$.
9 S. Kim, Y. Z. Kim, and K. H. Ahn, Tetrahedron Lett. 24, 3369 (1983).

