982 research outputs found
Single vortex fluctuations in a superconducting chip as generating dephasing and spin flips in cold atom traps
We study trapping of a cold atom by a single vortex line in an extreme type
II superconducting chip, allowing for pinning and friction. We evaluate the
atom's spin flip rate and its dephasing due to the vortex fluctuations in
equilibrium and find that they decay rapidly when the distance to the vortex
exceeds the magnetic penetration length. We find that there are special spin
orientations, depending on the spin location relative to the vortex, at which
spin dephasing is considerably reduced while perpendicular directions have a
reduced spin flip rate. We also show that the vortex must be perpendicular to
the surface for a general shape vortex.Comment: 6 pages, 4 figure
Realization of a superconducting atom chip
We have trapped rubidium atoms in the magnetic field produced by a
superconducting atom chip operated at liquid Helium temperatures. Up to
atoms are held in a Ioffe-Pritchard trap at a distance of 440
m from the chip surface, with a temperature of 40 K. The trap
lifetime reaches 115 s at low atomic densities. These results open the way to
the exploration of atom--surface interactions and coherent atomic transport in
a superconducting environment, whose properties are radically different from
normal metals at room temperature.Comment: Submitted to Phys. Rev. Let
High temperature magnetic stabilization of cobalt nanoparticles by an antiferromagnetic proximity effect
Thermal activation tends to destroy the magnetic stability of small magnetic
nanoparticles, with crucial implications in ultra-high density recording among
other applications. Here we demonstrate that low blocking temperature
ferromagnetic (FM) Co nanoparticles (TB<70 K) become magnetically stable above
400 K when embedded in a high N\'eel temperature antiferromagnetic (AFM) NiO
matrix. The origin of this remarkable TB enhancement is due to a magnetic
proximity effect between a thin CoO shell (with low N\'eel temperature, TN; and
high anisotropy, KAFM) surrounding the Co nanoparticles and the NiO matrix
(with high TN but low KAFM). This proximity effect yields an effective AFM with
an apparent TN beyond that of bulk CoO, and an enhanced anisotropy compared to
NiO. In turn, the Co core FM moment is stabilized against thermal fluctuations
via core-shell exchange-bias coupling, leading to the observed TB increase.
Mean-field calculations provide a semi-quantitative understanding of this
magnetic- proximity stabilization mechanism
High-resolution spatial mapping of a superconducting NbN wire using single-electron detection
Superconducting NbN wires have recently received attention as detectors for
visible and infrared photons. We present experiments in which we use a NbN wire
for high-efficiency (40 %) detection of single electrons with keV energy. We
use the beam of a scanning electron microscope as a focussed, stable, and
calibrated electron source. Scanning the beam over the surface of the wire
provides a map of the detection efficiency. This map shows features as small as
150 nm, revealing wire inhomogeneities. The intrinsic resolution of this
mapping method, superior to optical methods, provides the basis of a
characterization tool relevant for photon detectors.Comment: 2009 IEEE Toronto International Conference, Science and Technology
for Humanity (TIC-STH
Effects of spatial and temporal variability of rainfall on urban hydrological models
"The working hypothesis is that as fewer gauges are used to interpolate a rain event there will be more error. Preliminary results indicate that high
rain events produce much more error, around 300% relative error. It is also seen that the bigger the watershed the bigger the errors – this is mainly due to the fact that larger storms are associated with a larger variance and reducing the number of gauges used reduced the information provided to the model. Future work will focus on calibrating the model with field data and developing robust mechanism in order to properly choose which gauges to keep and what type of averaging and interpolating conditions should be used. "CONACYT - Consejo Nacional de Ciencias y TecnologíaPROCIENCI
Surface effects in nanoparticles: application to maghemite -Fe_{2}O_{3}
We present a microscopic model for nanoparticles, of the maghemite (% -FeO) type, and perform classical Monte Carlo simulations of
their magnetic properties. On account of M\"{o}ssbauer spectroscopy and
high-field magnetisation results, we consider a particle as composed of a core
and a surface shell of constant thickness. The magnetic state in the particle
is described by the anisotropic classical Dirac-Heisenberg model including
exchange and dipolar interactions and bulk and surface anisotropy. We consider
the case of ellipsoidal (or spherical) particles with free boundaries at the
surface. Using a surface shell of constant thickness ( nm) we vary
the particle size and study the effect of surface magnetic disorder on the
thermal and spatial behaviors of the net magnetisation of the particle. We
study the shift in the surface ``critical region'' for different
surface-to-core ratios of the exchange coupling constants. It is also shown
that the profile of the local magnetisation exhibits strong temperature
dependence, and that surface anisotropy is reponsible for the non saturation of
the magnetisation at low temperatures.Comment: 15 pages, 7 figures, to appear in Eur. Phys. J.
Asymmetry of localised states in a single quantum ring: polarization dependence of excitons and biexcitons
We performed spectroscopic studies of a single GaAs quantum ring with an
anisotropy in the rim height. The presence of an asymmetric localised state was
suggested by the adiabatic potential. The asymmetry was investigated in terms
of the polarization dependence of excitons and biexcitons, where a large energy
di erence (0.8 meV) in the exciton emission energy for perpendicular
polarizations was observed and the oscillator strengths were also compared
using the photoluminescence decay rate. For perpendicular polarizations the
biexciton exhibits twice the energy di erence seen for the exciton, a fact that
may be attributed to a possible change in the selection rules for the lowered
symmetry.Comment: accepted in Applied physics Letter
Entanglement of a Mesoscopic Field with an Atom induced by Photon Graininess in a Cavity
We observe that a mesoscopic field made of several tens of microwave photons
exhibits quantum features when interacting with a single Rydberg atom in a
high-Q cavity. The field is split into two components whose phases differ by an
angle inversely proportional to the square root of the average photon number.
The field and the atomic dipole are phase-entangled. These manifestations of
photon graininess vanish at the classical limit. This experiment opens the way
to studies of large Schrodinger cat states at the quantum-classical boundary
Monitoring stimulated emission at the single photon level in one-dimensional atoms
We theoretically investigate signatures of stimulated emission at the single
photon level for a two-level atom interacting with a one-dimensional light
field. We consider the transient regime where the atom is initially excited,
and the steady state regime where the atom is continuously driven with an
external pump. The influence of pure dephasing is studied, clearly showing that
these effects can be evidenced with state of the art solid state devices. We
finally propose a scheme to demonstrate the stimulation of one optical
transition by monitoring another one, in three-level one-dimensional atoms.Comment: 4 pages, 4 figures. Improved introduction; Comments adde
Excited exciton and biexciton localised states in a single quantum ring
We observe excited exciton and biexciton states of localised excitons in an
anisotropic quantum ring, where large polarisation asymmetry supports the
presence of a crescent-like localised structure. We also find that saturation
of the localised ground state exciton with increasing excitation can be
attributed to relatively fast dissociation of biexcitons (? 430 ps) compared to
slow relaxation from the excited state to the ground state (? 1000 ps). As no
significant excitonic Aharonov-Bohm oscillations occur up to 14 T, we conclude
that phase coherence around the rim is inhibited as a consequence of height
anisotropy in the quantum ring.Comment: 4 pages, 4 figure
- …