We study trapping of a cold atom by a single vortex line in an extreme type
II superconducting chip, allowing for pinning and friction. We evaluate the
atom's spin flip rate and its dephasing due to the vortex fluctuations in
equilibrium and find that they decay rapidly when the distance to the vortex
exceeds the magnetic penetration length. We find that there are special spin
orientations, depending on the spin location relative to the vortex, at which
spin dephasing is considerably reduced while perpendicular directions have a
reduced spin flip rate. We also show that the vortex must be perpendicular to
the surface for a general shape vortex.Comment: 6 pages, 4 figure