150 research outputs found
Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau
We investigated the fungal diversity in a total of 20 deep-sea sediment samples (of which 14 samples were associated with natural asphalt seeps and 6 samples were not associated) collected from two different sites at the Sao Paulo Plateau off Brazil by Ion Torrent PGM targeting ITS region of ribosomal RNA. Our results suggest that diverse fungi (113 operational taxonomic units (OTUs) based on clustering at 97% sequence similarity assigned into 9 classes and 31 genus) are present in deep-sea sediment samples collected at the Sao Paulo Plateau, dominated by Ascomycota (74.3%), followed by Basidiomycota (11.5%), unidentified fungi (7.1%), and sequences with no affiliation to any organisms in the public database (7.1%). However, it was revealed that only three species, namely Penicillium sp., Cadophora malorum and Rhodosporidiwn diobovatum, were dominant, with the majority of OTUs remaining a minor community. Unexpectedly, there was no significant difference in major fungal community structure between the asphalt seep and non-asphalt seep sites, despite the presence of mass hydrocarbon deposits and the high amount of macro organisms surrounding the asphalt seeps. However, there were some differences in the minor fungal communities, with possible asphalt degrading fungi present specifically in the asphalt seep sites. In contrast, some differences were found between the two different sampling sites. Classification of OTUs revealed that only 47 (41.6%) fungal OTUs exhibited >97% sequence similarity, in comparison with pre-existing ITS sequences in public databases, indicating that a majority of deep-sea inhabiting fungal taxa still remain undescribed. Although our knowledge on fungi and their role in deep-sea environments is still limited and scarce, this study increases our understanding of fungal diversity and community structure in deep-sea environments.Japan Society for the Promotion of ScienceJapan Agcy Marine Earth Sci & Technol, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, JapanUniv Vale Itajal, Dept Biol Sci, CTTMar, R Uruguai 458, BR-88302202 Itajal, SC, BrazilUniv Fed Sao Paulo, Rua Prof Artur Riedel 275, BR-09972270 Diadema, SP, BrazilUniv Sao Paulo, Inst Oceanog, 191 Praca Oceanog, BR-05508120 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Rua Prof Artur Riedel 275, BR-09972270 Diadema, SP, BrazilJSPS: 23770098JSPS: 15K18601Web of Scienc
Unveiling the RNA virosphere associated with marine microorganisms
The study of extracellular DNA viral particles in the ocean is currently one of the most advanced fields of research in viral metagenomic analysis. However, even though the intracellular viruses of marine microorganisms might be the major source of extracellular virus particles in the ocean, the diversity of these intracellular viruses is not well understood. Here, our newly developed method, referred to herein as fragmented and primer ligated dsRNA sequencing (flds) version 2, identified considerable genetic diversity of marine RNA viruses in cell fractions obtained from surface seawater. The RNA virus community appears to cover genome sequences related to more than half of the established positive‐sense ssRNA and dsRNA virus families, in addition to a number of unidentified viral lineages, and such diversity had not been previously observed in floating viral particles. In this study, more dsRNA viral contigs were detected in host cells than in extracellular viral particles. This illustrates the magnitude of the previously unknown marine RNA virus population in cell fractions, which has only been partially assessed by cellular metatranscriptomics and not by contemporary viral metagenomic studies. These results reveal the importance of studying cell fractions to illuminate the full spectrum of viral diversity on Earth
A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem
<div><p>A nearly complete genome sequence of <em>Candidatus</em> ‘Acetothermum autotrophicum’, a presently uncultivated bacterium in candidate division OP1, was revealed by metagenomic analysis of a subsurface thermophilic microbial mat community. Phylogenetic analysis based on the concatenated sequences of proteins common among 367 prokaryotes suggests that <em>Ca.</em> ‘A. autotrophicum’ is one of the earliest diverging bacterial lineages. It possesses a folate-dependent Wood-Ljungdahl (acetyl-CoA) pathway of CO<sub>2</sub> fixation, is predicted to have an acetogenic lifestyle, and possesses the newly discovered archaeal-autotrophic type of bifunctional fructose 1,6-bisphosphate aldolase/phosphatase. A phylogenetic analysis of the core gene cluster of the acethyl-CoA pathway, shared by acetogens, methanogens, some sulfur- and iron-reducers and dechlorinators, supports the hypothesis that the core gene cluster of <em>Ca.</em> ‘A. autotrophicum’ is a particularly ancient bacterial pathway. The habitat, physiology and phylogenetic position of <em>Ca.</em> ‘A. autotrophicum’ support the view that the first bacterial and archaeal lineages were H<sub>2</sub>-dependent acetogens and methanogenes living in hydrothermal environments.</p> </div
- …