37 research outputs found

    Predicting the influence of strain on crack length measurements performed using the potential drop method

    Get PDF
    The potential drop (PD) crack growth measurement technique is sensitive to strain accumulation which is often erroneously interpreted as crack extension. When testing ductile materials these errors can be significant, but in many cases the optimum method of minimising or supressing them remains unknown because it is extremely difficult to measure them experimentally in isolation from other sources of error, such non-ideal crack morphology. In this work a novel method of assessing the influence of strain on PD, using a sequentially coupled structural electrical finite element (FE) model, has been developed. By comparing the FE predictions with experimental data it has been demonstrated that the proposed FE technique is extremely effective at predicting trends in PD due to strain. It has been used to identify optimum PD configurations for compact tension, C(T), and single edge notched tension, SEN(T), fracture mechanics specimens and it has been demonstrated that the PD configuration often recommended for C(T) specimens can be subject to large errors due to strain accumulation. In addition, the FE technique has been employed to assess the significance of strain after the initiation of stable tearing for a monotonically loaded C(T) specimen. The proposed FE technique provides a powerful tool for optimising the measurement of crack initiation and growth in applications where large strains are present, e.g. J-R curve and creep crack growth testing

    Improvements in the Measurement of Creep Crack Initiation and Growth Using Potential Drop

    Get PDF
    To predict the residual life of components operating in the creep regime, it is vital to accurately identify crack initiation, and measure subsequent crack growth, in laboratory tests. Potential drop (PD) measurements, used for this purpose, are susceptible to errors caused by the accumulation of creep strain. For creep ductile materials, this can result in highly conservative crack initiation models and the implementation of unnecessary inspection and maintenance programmes that can cost millions of pounds in lost revenue. Conversely, the crack growth models can be non-conservative. Using a novel combination of interrupted creep crack growth (CCG) tests and sequentially coupled structural-electrical finite element analyses a new method of interpreting PD data has been developed and validated. It uses an increase in gradient on a plot of PD vs. load-line displacement to accurately identify crack initiation. This has been compared to the current method in ASTM E1457-15 by reanalysing data from CCG tests performed on a range of materials at various temperatures and loads. The initiation times, measured using the current ASTM method, were underestimated by factors of up to 23 and the subsequent crack growth rates were underestimated by factors of up to 1.5

    A unified potential drop calibration function for common crack growth specimens

    Get PDF
    Calibration functions, used to determine crack extension from potential drop measurements, are not readily available for many common crack growth specimen types. This restricts testing to a limited number of specimen types, typically resulting in overly conservative material properties being used in residual life assessments. This paper presents a unified calibration function which can be applied to all common crack growth specimen types, mitigating this problem and avoiding the significant costs associated with the current conservative approach. Using finite element analysis, it has been demonstrated that Johnson’s calibration function can be applied to the seven most common crack growth specimen types: C(T), SEN(T), SEN(B), M(T), DEN(T), CS(T) and DC(T). A parametric study has been used to determine the optimum configuration of electrical current inputs and PD probes. Using the suggested configurations, the error in the measurement of crack extension is <6% for all specimen types, which is relatively small compared to other sources of error commonly associated with the potential drop technique
    corecore