830 research outputs found

    Logarithmically modified scaling of temperature structure functions in thermal convection

    Full text link
    Using experimental data on thermal convection, obtained at a Rayleigh number of 1.5 ×1011\times 10^{11}, it is shown that the temperature structure functions , where ΔTr\Delta T_r is the absolute value of the temperature increment over a distance rr, can be well represented in an intermediate range of scales by rζpϕ(r)pr^{\zeta_p} \phi (r)^{p}, where the ζp\zeta_p are the scaling exponents appropriate to the passive scalar problem in hydrodynamic turbulence and the function ϕ(r)=1−a(ln⁥r/rh)2\phi (r) = 1-a(\ln r/r_h)^2. Measurements are made in the midplane of the apparatus near the sidewall, but outside the boundary layer

    Multiscale SOC in turbulent convection

    Full text link
    Using data obtained in a laboratory thermal convection experiment at high Rayleigh numbers, it is shown that the multiscaling properties of the observed mean wind reversals are quantitatively consistent with analogous multiscaling properties of the Bak-Tang-Wiesenfeld prototype model of self-organized criticality in two dimensions

    Fluctuations of temperature gradients in turbulent thermal convection

    Full text link
    Broad theoretical arguments are proposed to show, formally, that the magnitude G of the temperature gradients in turbulent thermal convection at high Rayleigh numbers obeys the same advection-diffusion equation that governs the temperature fluctuation T, except that the velocity field in the new equation is substantially smoothed. This smoothed field leads to a -1 scaling of the spectrum of G in the same range of scales for which the spectral exponent of T lies between -7/5 and -5/3. This result is confirmed by measurements in a confined container with cryogenic helium gas as the working fluid for Rayleigh number Ra=1.5x10^{11}. Also confirmed is the logarithmic form of the autocorrelation function of G. The anomalous scaling of dissipation-like quantities of T and G are identical in the inertial range, showing that the analogy between the two fields is quite deep

    Can a charged ring levitate a neutral, polarizable object? Can Earnshaw's Theorem be extended to such objects?

    Get PDF
    Stable electrostatic levitation and trapping of a neutral, polarizable object by a charged ring is shown to be theoretically impossible. Earnshaw's Theorem precludes the existence of such a stable, neutral particle trap.Comment: 11 pages, 1 figur

    The Galactic WN stars: Spectral analyses with line-blanketed model atmospheres versus stellar evolution models with and without rotation

    Get PDF
    CONTEXT: Very massive stars pass through the Wolf-Rayet (WR) stage before they finally explode. Details of their evolution have not yet been safely established, and their physics are not well understood. Their spectral analysis requires adequate model atmospheres, which have been developed step by step during the past decades and account in their recent version for line blanketing by the millions of lines from iron and iron-group elements. However, only very few WN stars have been re-analyzed by means of line-blanketed models yet. AIMS: The quantitative spectral analysis of a large sample of Galactic WN stars with the most advanced generation of model atmospheres should provide an empirical basis for various studies about the origin, evolution, and physics of the Wolf-Rayet stars and their powerful winds. METHODS: We analyze a large sample of Galactic WN stars by means of the Potsdam Wolf-Rayet (PoWR) model atmospheres, which account for iron line blanketing and clumping. The results are compared with a synthetic population, generated from the Geneva tracks for massive star evolution. RESULTS: We obtain a homogeneous set of stellar and atmospheric parameters for the Galactic WN stars, partly revising earlier results. CONCLUSIONS: Comparing the results of our spectral analyses of the Galactic WN stars with the predictions of the Geneva evolutionary calculations, we conclude that there is rough qualitative agreement. However, the quantitative discrepancies are still severe, and there is no preference for the tracks that account for the effects of rotation. It seems that the evolution of massive stars is still not satisfactorily understood.Comment: 19 pages, 11 figures, A&A, in press, additional Online-material on http://www.astro.physik.uni-potsdam.de/abstracts/galwn.htm

    Parameter constraints for high-energy models of colliding winds of massive stars: the case WR 147

    Full text link
    We explore the ability of high energy observations to constrain orbital parameters of long period massive binary systems by means of an inverse Compton model acting in colliding wind environments. This is particular relevant for (very) long period binaries where orbital parameters are often poorly known from conventional methods, as is the case e.g. for the Wolf-Rayet (WR) star binary system WR 147 where INTEGRAL and MAGIC upper limits on the high-energy emission have recently been presented. We conduct a parameter study of the set of free quantities describing the yet vaguely constrained geometry and respective effects on the non-thermal high-energy radiation from WR 147. The results are confronted with the recently obtained high-energy observations and with sensitivities of contemporaneous high-energy instruments like Fermi-LAT. For binaries with sufficient long periods, like WR 147, gamma-ray attenuation is unlikely to cause any distinctive features in the high-energy spectrum. This leaves the anisotropic inverse Compton scattering as the only process that reacts sensitively on the line-of-sight angle with respect to the orbital plane, and therefore allows the deduction of system parameters even from observations not covering a substantial part of the orbit. Provided that particle acceleration acts sufficiently effectively to allow the production of GeV photons through inverse Compton scattering, our analysis indicates a preference for WR 147 to possess a large inclination angle. Otherwise, for low inclination angles, electron acceleration is constrained to be less efficient as anticipated here.Comment: 33 pages, 9 figures; accepted by Ap
    • 

    corecore