180 research outputs found

    STUDIES OF THE BENTHIC MACROINVERTEBRATE FOR WATER QUALITY MONITORING IN CAN GIO-HCMC

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    CeO2 based catalysts for the treatment of propylene in motorcycle's exhaust gases

    Get PDF
    In this work, the catalytic activities of several single metallic oxides were studied for the treatment of propylene, a component in motorcycles' exhaust gases, under oxygen deficient conditions. Amongst them, CeO2 is one of the materials that exhibit the highest activity for the oxidation of C3H6. Therefore, several mixtures of CeO2 with other oxides (SnO2, ZrO2, Co3O4) were tested to investigate the changes in catalytic activity (both propylene conversion and CO2 selectivity). Ce0.9Zr0.1O2, Ce0.8Zr0.2O2 solid solutions and the mixtures of CeO2 and Co3O4 was shown to exhibit the highest propylene conversion and CO2 selectivity. They also exhibited good activities when tested under oxygen sufficient and excess conditions and with the presence of co-existing gases (CO, H2O)

    Vietnamese Version of Cornell Scale for Depression in Dementia at an Outpatient Memory Clinic: A Reliability and Validity Study

    Get PDF
    Background: In Vietnam, there has been, currently, no standardized tool for depression assessment for people with dementia (PWD). Cornell Scale for Depression in Dementia (CSDD) is a widely studied and used scale for PWD worldwide. Objectives: The aim of this study was to standardize the Vietnamese version of the CSDD (V-CSDD) in depression assessment in PWD through reliability and validity examination. Methods: V-CSDD was rated in terms of reliability and validity with gold standard regarding "major depressive episode"and "major depressive-like episode"of DSM-5. Cronbach's α, ICC, exploratory factor analysis (EFA), and receiver operating characteristic analysis were performed. Results: V-CSDD was found to have a high internal consistency reliability (Cronbach's α = 0.80), inter-rater reliability at sound ranking (ICC = 0.89; 95% CI = 0.81-0.94), maximum cut-off mark of 13 (sensitivity = 70%, specificity = 92%), and EFA, which suggested that V-CSDD may comprise 5 factors. Conclusions: Results indicate the V-CSDD to be a reliable and valid assessment and to be beneficial in classifying and diagnosing depression in dementia outpatients in clinical contexts

    AMMONIA REMOVAL FROM SWINE WASTEWATER USING AN AEROBIC, ANOXIC FILTER AT A PILOT-SCALE IN THANH LOC BIOSTATION

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    Model Updating for Large-Scale Railway Bridge Using Grey Wolf Algorithm and Genetic Alghorithms

    Get PDF
    This paper proposes a novel hybrid algorithm to deal with an inverse problem of a large-scale truss bridge. Grey Wolf Optimization (GWO) Algorithm is a well-known and widely applied metaheuristic algorithm. Nevertheless, GWO has two major drawbacks. First, this algorithm depends crucially on the positions of the leading Wolf. If the position of the leaderis far from the best solution, the obtained results are poor. On the other hand, GWO does not own capacities to improve the quality of new generations if elements are trapped into local minima. To remedy the shortcomings of GWO, we propose a hybrid algorithm combining GWO with Genetic Algorithm (GA), termed HGWO-GA. This proposed method contains two key features (1) based on crossover and mutation capacities, GA is first utilized to generate the high-quality elements (2) after that, the optimization capacity of GWO is employed to seek the optimal solutions. To assess the effectiveness of the proposed approach, a large-scale truss bridge is employed for model updating. The obtained results show that HGWO-GA not only provides a good agreement between numerical and experimental results but also outperforms traditional GWO in terms of accuracy

    Damage detection for a large-scale truss bridge using Tranmissibility and ANNAOA

    Get PDF
    In this paper, we propose an efficient approach to enhance the capacity of Artificial Neural Network (ANN) to deal with Structural Health Monitoring (SHM) problems.  Over the last decades, ANN has been extensively utilized for damage detection in structures. In order to identify damages, ANN frequently utilizes input information that is based on dynamic features such as mode shapes or natural frequencies. However, this type of data may not be able to detect minor damages if the structural defects are insignificant. To transcend these limitations, in this work, we propose utilizing transmissibility to create input data for the input layer of ANN. Moreover, to deal with local minimum problems of ANN, a combination between the Arithmetic Optimization Algorithm (AOA) and ANN is proposed. The global search capacity of AOA is employed to remedy the local minima of ANN. To evaluate the effectiveness of the proposed approach, a numerical model with different damage scenarios is considered. The suggested approach detects damage location precisely and with higher severity detection precision than the conventional ANN method
    corecore