95 research outputs found

    From dendrimers to fractal polymers and beyond

    Get PDF
    O advento da química dendrítica tem facilitado a pesquisa de materiais por permitir o controle preciso do posicionamento do componente funcional na arquitetura macromolecular. Os protocolos sintéticos iterativos usados para construção dos dendrímeros foram desenvolvidos baseados no desejo de elaborar moléculas extremamente ramificadas, com alta massa molecular, massa exata e funcionalidade planejada. Arborols, inspirados em árvores e precursores de macromoléculas utilitárias, conhecidas hoje como dendrímeros, foram os primeiros exemplos a empregar blocos de construção de ramificação-C 1→3; Características físicas dos Arborols, incluindo a sua forma globular, excelente solubilidade, e agregação, combinam-se para revelar o potencial supramolecular inerente (isto é, a micela unimolecular) destas espécies únicas. A arquitetura que é característica dos materiais dendríticos também exibe qualidades fractais com base em estruturas repetitivas, ramificadas e auto-similares. Assim, o design fractal e os aspectos supramoleculares destas construções são sugestivas de um campo maior de materiais fractais que incorporam geometrias repetidas. O uso de terpiridina-M2+-terpiridina (onde, M = Ru, Zn, Fe, etc) em conjunto com algoritmos matemáticos tais como as formas da base do Triângulo de Seirpinski, tem permitido o início da exploração da construção de materiais fractais. A propensão da auto-criação de moléculas fractais para arquiteturas de ordem superior adiciona outra dimensão para essa nova arena de materiais e construção de compostos.The advent of dendritic chemistry has facilitated materials research by allowing precise control of functional component placement in macromolecular architecture. The iterative synthetic protocols used for dendrimer construction were developed based on the desire to craft highly branched, high molecular weight, molecules with exact mass and tailored functionality. Arborols, inspired by trees and precursors of the utilitarian macromolecules known as dendrimers today, were the first examples to employ predesigned, 1 → 3 C-branched, building blocks; physical characteristics of the arborols, including their globular shapes, excellent solubilities, and demonstrated aggregation, combined to reveal the inherent supramolecular potential (e.g., the unimolecular micelle) of these unique species. The architecture that is a characteristic of dendritic materials also exhibits fractal qualities based on self-similar, repetitive, branched frameworks. Thus, the fractal design and supramolecular aspects of these constructs are suggestive of a larger field of fractal materials that incorporates repeating geometries and are derived by complementary building block recognition and assembly. Use of terpyridine-M2+-terpyridine (where, M = Ru, Zn, Fe, etc) connectivity in concert with mathematical algorithms, such as forms the basis for the Seirpinski gasket, has allowed the beginning exploration of fractal materials construction. The propensity of the fractal molecules to self-assemble into higher order architectures adds another dimension to this new arena of materials and composite construction

    Redox-active ferrocene-modified Cowpea mosaic virus nanoparticles

    Get PDF
    A naturally occurring nanoparticle, the plant virus Cowpea mosaic virus, can be decorated with ferrocene derivatives, of various linker lengths with amine and carboxylategroups, on the external surface using a range of conjugation strategies. The multiple, organometallic, redox-active ferrocene moieties on the outer surface of the virus are electrochemically independent with reduction potentials that span a potential window of 0.16 V that are dependent on the site of modification and the nature of the ferrocene derivative. The number of ferrocenes coupled to each virus ranges from about 100 to 240 depending upon the conjugation site and the linker length and these redox active units can provide multielectron reservoirs

    From dendrimers to fractal polymers and beyond

    Get PDF
    The advent of dendritic chemistry has facilitated materials research by allowing precise control of functional component placement in macromolecular architecture. The iterative synthetic protocols used for dendrimer construction were developed based on the desire to craft highly branched, high molecular weight, molecules with exact mass and tailored functionality. Arborols, inspired by trees and precursors of the utilitarian macromolecules known as dendrimers today, were the first examples to employ predesigned, 1 → 3 C-branched, building blocks; physical characteristics of the arborols, including their globular shapes, excellent solubilities, and demonstrated aggregation, combined to reveal the inherent supramolecular potential (e.g., the unimolecular micelle) of these unique species. The architecture that is a characteristic of dendritic materials also exhibits fractal qualities based on self-similar, repetitive, branched frameworks. Thus, the fractal design and supramolecular aspects of these constructs are suggestive of a larger field of fractal materials that incorporates repeating geometries and are derived by complementary building block recognition and assembly. Use of terpyridine-M2+-terpyridine (where, M = Ru, Zn, Fe, etc) connectivity in concert with mathematical algorithms, such as forms the basis for the Seirpinski gasket, has allowed the beginning exploration of fractal materials construction. The propensity of the fractal molecules to self-assemble into higher order architectures adds another dimension to this new arena of materials and composite construction

    Performance of energy storage devices: potential areas for dendritic chemistry involvement

    Get PDF
    A compound consists of a fractal-like, plain or organometallic array useful for energy storage devices. A dendrimer useful in the synthesis of the fractal-like compound includes a single ligating moiety bound to a surface of each quadrant of the dendrimer. A method of making metallo-based (macro) molecules includes the steps of combining monomers selected from the group consisting of bipyridal- and terpyridal-based ligands with connecting metals and self assembling macrocycles wherein the monomes are interconnected by the metals

    Increases in Research Funding Move USF into the Future

    No full text
    Published as Vol. 31, No. 7. Mentions the new USGS facilities at USFSP

    Metallodendrimers and their potential utilitarian applications.

    No full text
    abstract: A review. The unique features of dendritic architecture and the rich chem. of organo-transition metal complexes were combined in metallodendrimers to create the potential for a wide range of utilitarian applications. Because dendrimers allow scientists to probe the twilight zone between homogeneous and heterogeneous catalysis and to apply the techniques assocd. with combinatorial-type chem., diverse new areas of the nano-world have became accessible. Since many new avenues in supramol. chem. were opened by organometallic complexes, metallodendrimers will continue to play an important role in not only organometallic chem. and polymer science, but also in material science. These new interfaces will be rich areas for future science to pursue. [on SciFinder(R)] Cited Reference: Citations: 1) Newkome, G; J Org Chem 1985, 50, 2003|2) Tomalia, D; Polym J (Tokyo) 1985, 17, 117|3) Lehn, J; Supramolecular Chemistry: Concepts and Perspectives 1995|4) Lehn, J; Polym Int 2002, 51, 825|5) Denti, G; J Am Chem Soc 1992, 114, 2944|6) Denti, G; Inorg Chim Acta 1991, 182, 127|7) Campagna, S; Inorg Chem 1992, 31, 2982|8) Newkome, G; Angew Chem, Int Ed Engl 1991, 30, 1176|9) Newkome, G; J Chem Soc, Chem Commun 1993, 925|10) Astruc, D; Topics Curr Chem 2000, 210, 229|11) Gorman, C; Adv Mater 1998, 10, 295|12) Hearshaw, M; Chem Commun 1999, 1|13) Newkome, G; Chem Rev 1999, 99, 1689|14) Onitsuka, K; Topics Curr Chem 2003, 228, 39|15) Stoddart, F; Polyhedron 1999, 18, 3575|16) Astruc, D; Chem Rev 2001, 101, 2991|17) Balzani, V; Coord Chem Rev 2001, 219-221, 545|18) Crooks, R; Acc Chem Res 2001, 34, 181|19) Denti, G; Photochemistry, Conversion and Storage of Solar Energy 1991, 27|20) Gorman, C; C R Chimie 2003, 6, 911|21) Hudson, R; J Organomet Chem 2001, 637-639, 47|22) Kleij, A; Dendrimers and Other Dendritic Polymers 2001, 485|23) Oosterom, G; Angew Chem Int Ed 2001, 40, 1828|24) Serroni, S; C R Chimie 2003, 6, 883|25) Hearshaw, M; Advances in Dendritic Macromolecules 1999, 1|26) Newkome, G; Dendrimers and Dendrons: Concepts, Syntheses, Applications 2001|27) Corma, A; Dalton Trans 2005, 1381|28) Corma, A; Chem Rev 1997, 97, 2372|29) Halm, C; Angew Chem Int Ed 1998, 37, 510|30) Kobayashi, S; J Am Chem Soc 1998, 120, 2985|31) Mehnert, C; J Am Chem Soc 1998, 120, 12289|32) Knapen, J; Nature 1994, 372, 659|33) Kleij, A; J Am Chem Soc 2000, 122, 12112|34) Hovestad, N; J Org Chem 2000, 65, 6338|35) March, J; Advanced Organic Chemistry, Fourth Edition 1992, 5|36) van Koten, G; J Mol Catal Part A: Chem 1999, 146, 317|37) Kleij, A; Angew Chem Int Ed 2000, 39, 176|38) Gossage, R; Tetrahedron Lett 1999, 40, 1413|39) Rauchfuss, T; Inorg Chem 1977, 16, 2966|40) Vogt, D; Aqueous-Phase Organometallic Catalysts 2004, 639|41) Muller, C; J Am Chem Soc 2004, 126, 14960|42) Chow, H; Tetrahedron 1998, 54, 13813|43) Mak, C; Macromolecules 1997, 30, 1228|44) Chow, H; J Org Chem 1997, 62, 5116|45) Camps, X; Chem Eur J 1997, 3, 561|46) Camps, X; Chem Eur J 1999, 5, 2362|47) Herzog, A; Eur J Org Chem 2000, 171|48) Hetzer, M; Angew Chem Int Ed 1999, 38, 1962|49) Hetzer, M; Adv Mater 1997, 9, 913|50) Hetzer, M; J Phys Chem A 1999, 103, 637|51) Lamparth, I; Angew Chem, Int Ed Engl 1995, 36, 1607|52) Djojo, F; Eur J Org Chem 2000, 1051|53) Fritschi, H; Helv Chim Acta 1998, 71, 1553|54) Trzeciak, A; Coord Chem Rev 1999, 190-192, 883|55) de Groot, D; Inorg Chem Commun 2000, 3, 711|56) van der Made, A; J Chem Soc, Chem Commun 1992, 1400|57) de Groot, D; Chem Commun 1999, 1623|58) Bourque, S; J Am Chem Soc 2000, 122, 956|59) Reetz, M; Angew Chem Int Ed 1997, 36, 1526|60) Put, E; Chem Phys Lett 1996, 260, 136|61) Gong, A; J Mol Catal Part A: Chem 2000, 159, 225|62) Jaffres, P; J Chem Soc, Dalton Trans 1998, 2770|63) Ropartz, L; J Chem Soc, Dalton Trans 2002, 1997|64) Ropartz, L; Chem Commun 2001, 361|65) Ropartz, L; Inorg Chem Commun 2000, 3, 714|66) Simpson, M; J Chem Soc, Dalton Trans 1996, 1793|67) Petrucci-Samija, M; J Am Chem Soc 1999, 121, 1968|68) Bourrier, O; Macromol Symp 2004, 210, 97|69) Bourrier, O; Inorg Chim Acta 2004, 357, 3836|70) Kakkar, A; Macromol Symp 2003, 196, 145|71) Angurell, I; Dalton Trans 2003, 1194|72) Angurell, I; Dalton Trans 2004, 2450|73) Botman, P; Tetrahedron Lett 2004, 45, 5999|74) Botman, P; Eur J Org Chem 2002, 1952|75) van den Berg, M; J Am Chem Soc 2000, 122, 11539|76) van den Berg, M; Adv Synth Catal 2003, 345, 308|77) Bourque, S; J Am Chem Soc 1999, 121, 3035|78) Arya, P; J Org Chem 2000, 65, 1881|79) Arya, P; J Am Chem Soc 2001, 123, 2889|80) Busseto, L; Organometallics 2002, 21, 1849|81) Busseto, L; Organometallics 2002, 21, 4993|82) Busseto, L; J Mol Catal Part A: Chem 2003, 206, 153|83) Busseto, L; J Organomet Chem 2004, 689, 2216|84) Busseto, L; Dalton Trans 2004, 2767|85) Tang, W; Chem Rev 2003, 103, 3029|86) Nagel, U; Angew Chem, Int Ed Engl 1984, 23, 435|87) Albrecht, J; Angew Chem, Int Ed Engl 1996, 35, 407|88) Yi, B; Org Lett 2004, 6, 1361|89) Cesar, V; Chem Soc Rev 2004, 33, 619|90) Bourissou, D; Chem Rev 2000, 100, 39|91) Fujihara, T; Chem Commum 2005, 36, 4526|92) Jira, R; Applied Homogeneous Catalysis with Ogranometallic Compounds 1996, 374|93) Januszkiewicz, K; Tetrahedron Lett 1983, 24, 5159|94) Alper, H; Tetrahedron Lett 1985, 26, 2263|95) Zahalka, H; J Mol Catal 1986, 35, 249|96) Monflier, E; J Mol Catal Part A: Chem 1996, 109, 27|97) Antebi, S; J Org Chem 2002, 67, 6623|98) Alper, H; Can J Chem 2000, 78, 920|99) Zweni, P; Adv Synth Catal 2004, 346, 849|100) Brinkmann, N; J Catal 1999, 183, 163|101) Catsoulacos, D; Tetrahedron Lett 2003, 44, 4575|102) Beller, M; Transition Metals for Organic Synthesis 2004|103) Beletskaya, I; Chem Rev 2000, 100, 3009|104) de Groot, D; Eur J Org Chem 2002, 1085|105) Tykwinski, R; Angew Chem Int Ed 2003, 42, 1566|106) Dupont, J; Chem Rev 2002, 102, 3667|107) Heuze, K; Chem Commun 2003, 2274|108) Heuze, K; Chem Eur J 2004, 10, 3936|109) Kleij, A; Organometallics 2001, 20, 634|110) Malkoch, M; J Org Chem 2002, 67, 8197|111) Rodrigues, G; Chem Eur J 2002, 8, 46|112) Canovese, L; Organometallics 2002, 21, 4342|113) Beletskaya, I; Chem Rev 2000, 100, 3009|114) Dahan, A; Org Lett 2003, 5, 1197|115) Cabri, W; Acc Chem Res 1995, 28, 2|116) Mizugaki, T; J Mol Catal Part A: Chem 1999, 145, 329|117) Mizugaki, T; Chem Commun 2002, 52|118) Ooe, M; Chem Lett 2003, 32, 692|119) Ooe, M; J Am Chem Soc 2004, 126, 1604|120) Ribourdouille, Y; Chem Commun 2003, 1228|121) Becker, J; Organometallics 2004, 22, 4984|122) Hecht, S; Angew Chem Int Ed 2001, 40, 75|123) Smith, D; Chem Eur J 1998, 4, 1353|124) Smith, D; Topics Curr Chem 2000, 210, 183|125) Zeng, F; Chem Rev 1997, 97, 1681|126) Ait-Haddou, H; Inorg Chim Acta 2004, 357, 3854|127) Garber, S; J Am Chem Soc 2000, 122, 8168|128) Grubbs, R; Tetrahedron 1998, 54, 4413|129) Schwab, P; Angew Chem, Int Ed Engl 1995, 34, 2039|130) Trnka, T; Acc Chem Res 2001, 34, 18|131) Wijkens, P; Org Lett 2000, 2, 1612|132) Alonso, E; J Am Chem Soc 2000, 122, 3222|133) de Brabander-van den Berg, E; Angew Chem, Int Ed Engl 1993, 32, 1308|134) Bardaji, M; Organometallics 1997, 16, 403|135) Kingsbury, J; J Am Chem Soc 1999, 121, 791|136) Gatard, S; Angew Chem Int Ed 2003, 42, 452|137) Claeys, M; Stud Surf Sci Catal 2000, 130B, 1157|138) Rofer-DePoorter, C; Chem Rev 1981, 81, 447|139) Maraval, V; Organometallics 2000, 19, 4025|140) Ono, Y; J Catal 2003, 216, 406|141) Nishimura, S; Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis 2001|142) Zassinovich, G; Chem Rev 1992, 92, 1051|143) Naota, T; Chem Rev 1998, 98, 2599|144) Chen, Y; J Org Chem 2002, 67, 5301|145) Kriesel, J; Polym Prepr 2000, 41, 566|146) Kriesel, J; Chem Mater 2000, 12, 1171|147) Kriesel, J; Chem Mater 1999, 11, 1190|148) Kriesel, J; Adv Mater 2001, 13, 1645|149) Wulff, H; US 4021454 1997|150) Seebach, D; Chimia 2000, 54, 60|151) Seebach, D; Chimia 2001, 55, 98|152) Soai, K; Chem Rev 1992, 92, 833|153) Rheiner, P; Helv Chim Acta 1997, 80, 2027|154) Sellner, H; Angew Chem Int Ed 1999, 38, 1918|155) Seebach, D; Helv Chim Acta 1996, 79, 1710|156) Sellner, H; Helv Chim Acta 2002, 85, 352|157) Rheiner, P; Chem Eur J 1999, 5, 3221|158) Hu, Q; J Org Chem 1999, 64, 7528|159) Pugh, V; Angew Chem Int Ed 2000, 39, 3638|160) Yamago, S; Tetrahedron Lett 1998, 39, 3783|161) Keck, G; J Am Chem Soc 1993, 115, 8467|162) Bourget-Merie, L; Chem Rev 2002, 102, 3031|163) Gibson, V; Chem Rev 2003, 103, 283|164) Andres, R; J Organomet Chem 2005, 690, 939|165) Andres, R; Eur J Inorg Chem 2002, 2281|166) Astruc, D; Adv Synth Catal 2005, 347, 329|167) Astruc, D; C R Chimie 2005, 8, 1101|168) Rigaut, S; J Am Chem Soc 1997, 119, 11132|169) Schneider, R; Chem Commun 1999, 2415|170) Breinbauer, R; Angew Chem Int Ed 2000, 39, 3604|171) Jacobsen, E; Acc Chem Res 2000, 33, 421|172) McKeown, N; Phthalocyanine Materials: Synthesis, Structure, and Function 1998|173) Kimura, M; Chem Eur J 1999, 5, 3495|174) Newkome, G; Org Prep Proc Int 1996, 28, 242|175) Schore, N; Organic Reactions 1991, 40, 1|176) Dahan, A; Chem Commun 2002, 2700|177) Bhyrappa, P; J Am Chem Soc 1996, 118, 5708|178) Bhyrappa, P; J Mol Catal Part A: Chem 1996, 113, 109|179) Suslick, K; J Inorg Biochem 1997, 67, 234|180) Cook, B; J Am Chem Soc 1986, 108, 7281|181) Suslick, K; J Chem Soc, Chem Commun 1987, 200|182) Bu, J; Catal Lett 2003, 85, 183|183) Gilbert, A; Essentials of Molecular Photochemistry 1991|184) Valeur, B; Molecular Fluorescence 2002|185) Ballardini, R; Acc Chem Res 2001, 34, 445|186) Balzani, V; Chem Rev 1996, 96, 759|187) Balzani, V; Acc Chem Res 1998, 31, 26|188) Balzani, V; Angew Chem Int Ed 2000, 39, 3348|189) Balzani, V; Chem Rec 2001, 1, 422|190) Balzani, V; C R Chimie 2003, 6, 867|191) Ceroni, P; Prog Polym Sci 2005, 30, 453|192) Serroni, S; J Mater Chem 1997, 7, 1227|193) Puntoriero, F; J Chem Soc, Dalton Trans 2001, 1035|194) Sommovigo, M; Inorg Chem 2001, 40, 3318|195) Campagna, S; Inorg Chem 1999, 38, 692|196) ben-Avraham, D; J Phys Chem Part B 1998, 102, 5088|197) Schulman, L; J Phys Chem 1995, 99, 9283|198) Kawa, M; Thin Solid Films 1998, 331, 259|199) Kawa, M; Chem Mater 1998, 10, 286|200) Seto, T; J Synch Rad 2001, 8, 710|201) Kawa, M; Kobunshi Ronbunshu 2000, 57, 855|202) Kawa, M; Chem Mater 2004, 16, 2282|203) Forster, T; Ann Phys 1948, 2, 55|204) Lo, S; Adv Mater 2002, 14, 975|205) Gunnlaugsson, T; Chem Commun 2003, 2425|206) Gunnlaugsson, T; J Am Chem Soc 2003, 125, 12062|207) Atkinson, P; Chem Commun 2004, 438|208) Werts, M; Angew Chem Int Ed 2000, 39, 4542|209) Vogtle, F; Chem Phys Chem 2002, 3, 769|210) Ceroni, P; J Organomet Chem 2004, 689, 4375|211) Hahn, U; Angew Chem Int Ed 2002, 41, 3595|212) Vicinelli, V; J Am Chem Soc 2002, 124, 6461|213) Lukes, I; Coord Chem Rev 2001, 216-217, 287|214) Hay, B; Coord Chem Rev 2001, 212, 61|215) Saudan, C; Dalton Trans 2004, 1597|216) Saudan, C; Tetrahedron 2003, 59, 3845|217) Saudan, C; J Am Chem Soc 2003, 125, 4424|218) Saudan, C; Chem Eur J 2004, 10, 899|219) Chong, S; Organometallics 2004, 23, 4924|220) Fischer, M; Angew Chem Int Ed 1999, 38, 885|221) Anzenbacher, P; J Am Chem Soc 2002, 124, 6232|222) Koo, B; Sens Actuators, B 2001, 77, 432|223) Vanderkooi, J; J Biol Chem 1987, 262, 5476|224) Rumsey, W; Science 1988, 241, 1649|225) Vinogradov, S; Biophys J 1996, 70, 1609|226) Brinas, R; J Am Chem Soc 2005, 127, 11851|227) Vinogradov, S; Proc SPIE--The International Society for Optical Engineering 2002, 4626, 193|228) Rietveld, I; Tetrahedron 2003, 59, 3821|229) Brinas, R; J Am Chem Soc 2005, 127, 11851|230) Albrecht, M; Chem Commun 2001, 1874|231) Albrecht, M; Chem Eur J 2000, 6, 1431|232) Albrecht, M; Chem Commun 1998, 1003|233) Albrecht, M; Chem Eur J 2001, 7, 1289|234) Ward, M; Science 1990, 249, 1007|235) Schramm, U; Sens Actuators, B 1999, 57, 233|236) Daniel, M; Chem Commum 2001, 2000|237) Wang, R; Angew Chem Int Ed 2001, 40, 549|238) Daniel, M; J Am Chem Soc 2003, 125, 2617|239) Kim, M; Chem Commun 2001, 667|240) Valerio, C; J Am Chem Soc 1997, 119, 2588|241) Wiener, E; Advances in Dendritic Macromolecules 2002, 129|242) Wiener, E; Magn Reson Med 1994, 31, 1|243) Andre, J; Chem Eur J 2004, 10, 5804|244) Laus, S; Chem Eur J 2005, 11, 3064|245) Livramento, J; Angew Chem Int Ed 2005, 44, 1480|246) Bianchi, A; Coord Chem Rev 2000, 204, 309|247) Alonso, B; C R Acad Sci Paris II, Chemie 2001, 4, 173|248) Nlate, S; Chem Eur J 2000, 6, 2544|249) Ruiz, J; Chem Commun 2002, 1108|250) Balzani, V; Chem Phys Chem 2003, 3, 49|251) Carroll, R; Angew Chem Int Ed 2002, 41, 4379|252) Low, P; Dalton Trans, 2005, 2821|253) Maruccio, G; J Mater Chem 2004, 14, 542|254) Raymo, F; Chem Soc Rev 2005, 34, 327|255) Schenning, A; Synth Met 2004, 147, 43|256) Tour, J; Acc Chem Res 2000, 33, 791|257) Nlate, S; Chem Commun 2000, 417|258) Macdonald, J; J Porphyrins Phthalocyanines 2001, 5, 105|259) McCaughin, J; Drug Aging 1999, 15, 49|260) Veenhuizen, R; Int J Cancer 1997, 73, 230|261) Madsen, S; Photochem Photobiol 2000, 72, 128|262) Songca, S; J Pharm Pharmacol 2000, 52, 1361|263) Bousset, N; Res Exp Med 2000, 199, 341|264) Sadamoto, R; J Am Chem Soc 1996, 118, 3978|265) Jiang, D; J Am Chem Soc 1998, 120, 10895|266) Nishiyama, N; Bioconj Chem 2003, 14, 5

    Detection and functionalization of dendrimers

    Get PDF
    A method of detecting unreacted termini within a dendritic structure is achieved by exposing a dendrimer to a single generating compound capable of bonding to and tagging a deprotected but uncoupled termini. A signal generated by the signal generating compound to an otherwise uncoupled termini provides detection of the unreacted termini

    Lock and key micelles

    Get PDF
    A lock unimolecular micelle includes at least one engineered acceptor specifically binding a ligand (or specifically a âkeyâ unimolecular micelle) thereto. A key unimolecular micelle comprises a core molecule and a plurality of branches extending therefrom, at least one of the branches including a shank portion extending therefrom having a terminal moiety at an end thereof for binding to a complimentary acceptor of a lock unimolecular micelle. Together, the lock and key micelles form a unit, either irreversibly or reversibly bound wherein the lock micelles is a soluble receptor engineered to specifically bind to the specifically engineered key micelle
    corecore