29 research outputs found

    On the abundance and source contributions of dicarboxylic acids in size-resolved aerosol particles at continental sites in central Europe

    Get PDF
    Dicarboxylic acids (DCAs) are among the most abundant organic compounds observed in atmospheric aerosol particles and have been extensively studied at many places around the world. The importance of the various primary sources and secondary formation pathways discussed in the literature is often difficult to assess from field studies, though. In the present study, a large data set of size-resolved DCA concentrations from several inland sites in Germany is combined with results from a recently developed approach of statistical back-trajectory analysis and additional data. Principal component analysis is then used to reveal the most important factors governing the abundance of DCAs in different particle size ranges. The two most important sources revealed are (i) photochemical formation during intense radiation days in polluted air masses, likely occurring in the gas phase on short timescales (gasSOA), and (ii) secondary reactions in anthropogenically influenced air masses, likely occurring in the aqueous phase on longer timescales (aqSOA). While the first source strongly impacts DCA concentrations mainly in small and large particles, the second one enhances accumulation mode DCAs and is responsible for the bulk of the observed concentrations. Primary sources were found to be minor (sea salt, soil resuspension) or non-existent (biomass burning, traffic). The results can be regarded as representative for typical central European continental conditions

    Hygroscopic properties of different aerosol types over the Atlantic and Indian Oceans

    Get PDF
    Hygroscopic properties of atmospheric particles were studied in the marine tropospheric boundary layer over the Atlantic and Indian Oceans during two consecutive field studies: the Aerosols99 cruise (Atlantic Ocean) from 15 January to 20 February 1999, and the INDOEX cruise (Indian Ocean Experiment) from 23 February to 30 March 1999. The hygroscopic properties were compared to optical and chemical properties, such as absorption, chemical inorganic composition, and mass concentration of organic and elemental carbon, to identify the influence of these parameters on hygroscopicity. During the two field studies, four types of aerosol-sampling instruments were used on board the NOAA (National Oceanic and Atmospheric Administration) Research Vessel Ronald H. Brown: Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA), seven-stage cascade impactor, two-stage cascade impactor, and Particle Soot Absorption Photometer (PSAP). The HTDMA was used to determine the hygroscopic properties of atmospheric particles at initial dry sizes (Dp) of 50, 150, and 250 nm and at relative humidities (RH) of 30, 55, 75, and 90%. Simultaneously, a seven-stage cascade impactor of which 3 stages were in the sub-mm size range was used to determine the molar composition of the major inorganic ions such as ammonium and sulfate ions. A two-stage cascade impactor (1 in the sub-mm size range, 1 in the sup-mm size range) was used to determine the mass concentration of organic and elemental carbon. The PSAP was used (at a wavelength of 565 nm) to measure the light absorption coefficient of the aerosol. During the two field studies, air masses of several different origins passed the ship's cruise path. The occurrence of different air masses was classified into special time periods signifying the origin of the observed aerosol. All time periods showed a group of particles with high hygroscopic growth. The measured average hygroscopic growth factors defined by the ratio of dry and wet particle diameter at 90% RH ranged from 1.6 to 2.0, depending on the dry particle size and on the type of air mass. Particles with low hygroscopic growth occurred only when continentally influenced air masses arrived at the ship's position. Distinctions in hygroscopic growth of particles of different air masses were more significant for small relative humidities (30% or 55% RH). High concentrations of elemental carbon corresponded with high light absorption coefficients and with the occurrence of less-hygroscopic and nearly hydrophobic particle fractions in the hygroscopic growth distributions. A key finding is that clean marine air masses that had no land contact for five to six days could clearly be distinguished from polluted air masses that had passed over a continent several days before reaching the ship

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Full text link

    Two-dimensional capillary zone electrophoresis–mass spectrometry for the characterization of intact monoclonal antibody charge variants, including deamidation products.

    No full text
    Capillary zone electrophoresis (CZE) is a powerful tool that is progressively being applied for the separation of monoclonal antibody (mAb) charge variants. Mass spectrometry (MS) is the desired detection method concerning identification of mAb variants. In biopharmaceutical applications, there exist optimized and validated electrolyte systems for mAb variant quantification. However, these electrolytes interfere greatly with the electrospray ionization (ESI) process. Here, a heart-cut CZE–CZE–MS setup with an implemented mechanical four-port valve interface was developed that used a generic ε-aminocaproic acid based background electrolyte in the first dimension and acetic acid in the second dimension. Interference-free, highly precise mass data (deviation less than 1 Da) of charge variants of trastuzumab, acting as model mAb system, were achieved. The mass accuracy obtained (low parts per million range) is discussed regarding both measured and calculated masses. Deamidation was detected for the intact model antibody, and related mass differences were significantly confirmed on the deglycosylated level. The CZE–CZE–MS setup is expected to be applicable to a variety of antibodies and electrolyte systems. Thus, it has the potential to become a compelling tool for MS characterization of antibody variants separated in ESI-interfering electrolytes

    Successive multiple ionic-polymer layer coatings for intact protein analysis by capillary zone electrophoresis-mass spectrometry: Application to hemoglobin analysis.

    No full text
    Adsorption of analytes, e.g., proteins, often interfere with separation in CE, due to the relatively large surface of the narrow capillary. Coatings often are applied to prevent adsorption and to determine the electroosmotic flow (EOF), which is of major importance for the separation in CE. Successive multiple ionic-polymer layer (SMIL) coatings are frequently used for protein analysis in capillary electrophoresis resulting in high separation efficiency and repeatability. Here, the coating procedure of a five-layer SMIL coating is described using quaternized diethylaminoethyl dextran (DEAEDq) as polycation and poly(methacrylic acid) (PMA) as polyanion. Depending on the analyte, different polyions may be used to increase separation efficiency. However, the coating procedure remains the same.To demonstrate the applicability of SMIL coatings in CE-MS, human hemoglobin was measured in a BGE containing 2 M acetic acid. DEAEDq-PMA coating was found to be the most suitable for hemoglobin analysis due to relatively low reversed electroosmotic mobility leading to increased electrophoretic resolution of closely related proteoforms. Thereby, not only alpha and beta subunit of the hemoglobin could be separated, but also positional isoforms of glycated and carbamylated species were separated within 24 min
    corecore