74 research outputs found

    Infinite N phase transitions in continuum Wilson loop operators

    Full text link
    We define smoothed Wilson loop operators on a four dimensional lattice and check numerically that they have a finite and nontrivial continuum limit. The continuum operators maintain their character as unitary matrices and undergo a phase transition at infinite N reflected by the eigenvalue distribution closing a gap in its spectrum when the defining smooth loop is dilated from a small size to a large one. If this large N phase transition belongs to a solvable universality class one might be able to calculate analytically the string tension in terms of the perturbative Lambda-parameter. This would be achieved by matching instanton results for small loops to the relevant large-N-universal function which, in turn, would be matched for large loops to an effective string theory. Similarities between our findings and known analytical results in two dimensional space-time indicate that the phase transitions we found only affect the eigenvalue distribution, but the traces of finite powers of the Wilson loop operators stay smooth under scaling.Comment: 31 pages, 9 figures, typos and references corrected, minor clarifications adde

    Hybrid Monte Carlo with Fat Link Fermion Actions

    Get PDF
    The use of APE smearing or other blocking techniques in lattice fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as FLIC fermions. The FLIC fermion formalism makes use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarisation is often performed using an iterative maximisation of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants. The necessary equations of motion for FLIC fermions are derived, and some initial simulation results are presented. The technique is more general however, and is straightforwardly applicable to other smearing techniques or fat link actions

    Novel fat-link fermion actions

    Get PDF
    The hadron mass spectrum is calculated in lattice QCD using a novel fat-link clover fermion action in which only the irrelevant operators of the fermion action are constructed using smeared links. The simulations are performed on a 16^3 X 32 lattice with a lattice spacing of a=0.125 fm. We compare actions with n=4 and 12 smearing sweeps with a smearing fraction of 0.7. The n=4 Fat Link Irrelevant Clover (FLIC) action provides scaling which is superior to mean-field improvement, and offers advantages over nonperturbative O(a) improvement.Comment: 5 pages, 2 figures, talk given by J.Zanotti at LHP 2001 workshop, Cairns, Australi

    A Lattice Formulation of Super Yang-Mills Theories with Exact Supersymmetry

    Full text link
    We construct super Yang-Mills theories with extended supersymmetry on hypercubic lattices of various dimensions keeping one or two supercharges exactly. Gauge fields are represented by ordinary unitary link variables, and the exact supercharges are nilpotent up to gauge transformations. Among the models, we show that the desired continuum theories are obtained without any fine tuning of parameters for the cases N=2,4,8{\cal N}=2, 4, 8 in two-dimensions.Comment: 29 pages, 1 figure, LaTeX, (v2) problem on degenerate vacua discussed, renormalization arguments modified, (v3) explanations and references added, published version in JHE

    Ginsparg-Wilson Relation, Topological Invariants and Finite Noncommutative Geometry

    Get PDF
    We show that the Ginsparg-Wilson (GW) relation can play an important role to define chiral structures in {\it finite} noncommutative geometries. Employing GW relation, we can prove the index theorem and construct topological invariants even if the system has only finite degrees of freedom. As an example, we consider a gauge theory on a fuzzy two-sphere and give an explicit construction of a noncommutative analog of the GW relation, chirality operator and the index theorem. The topological invariant is shown to coincide with the 1st Chern class in the commutative limit.Comment: Revtex4 file, 5 pages, references added, typo corrected, the final version to appear in Phys.Rev.

    Low-Dimensional Long-Range Topological Charge Structure in the QCD Vacuum

    Get PDF
    While sign-coherent 4-dimensional structures cannot dominate topological charge fluctuations in the QCD vacuum at all scales due to reflection positivity, it is possible that enhanced coherence exists over extended space-time regions of lower dimension. Using the overlap Dirac operator to calculate topological charge density, we present evidence for such structure in pure-glue SU(3) lattice gauge theory. It is found that a typical equilibrium configuration is dominated by two oppositely-charged sign-coherent connected structures (``sheets'') covering about 80% of space-time. Each sheet is built from elementary 3-d cubes connected through 2-d faces, and approximates a low-dimensional curved manifold (or possibly a fractal structure) embedded in the 4-d space. At the heart of the sheet is a ``skeleton'' formed by about 18% of the most intense space-time points organized into a global long-range structure, involving connected parts spreading over maximal possible distances. We find that the skeleton is locally 1-dimensional and propose that its geometrical properties might be relevant for understanding the possible role of topological charge fluctuations in the physics of chiral symmetry breaking.Comment: 4 pages RevTeX, 4 figures; v2: 6 pages, 5 figures, more explanations provided, figure and references added, published versio

    Improved results for N=(2,2) super Yang-Mills theory using supersymmetric discrete light-cone quantization

    Full text link
    We consider the (1+1)-dimensional N=(2,2){\cal N}=(2,2) super Yang--Mills theory which is obtained by dimensionally reducing N=1{\cal N}=1 super Yang--Mills theory in four dimension to two dimensions. We do our calculations in the large-NcN_c approximation using Supersymmetric Discrete Light Cone Quantization. The objective is to calculate quantities that might be investigated by researchers using other numerical methods. We present a precision study of the low-mass spectrum and the stress-energy correlator . We find that the mass gap of this theory closes as the numerical resolution goes to infinity and that the correlator in the intermediate rr region behaves like r−4.75r^{-4.75}.Comment: 18 pages, 8 figure

    Kaon B Parameter in Quenched QCD

    Full text link
    I calculate the kaon B-parameter with a lattice simulation in quenched approximation. The lattice simulation uses an action possessing exact lattice chiral symmetry, an overlap action. Computations are performed at two lattice spacings, about 0.13 and 0.09 fm (parameterized by Wilson gauge action couplings beta=5.9 and 6.1) with nearly the same physical volumes and quark masses. I describe particular potential difficulties which arise due to the use of such a lattice action in finite volume. My results are consistent with other recent lattice determinations using domain-wall fermions.Comment: 23 pages, Revtex, 16 postscript figure

    Improved chiral properties of FLIC fermions

    Get PDF
    Copyright © 2005 Elsevier B.V. All rights reserved.The chiral properties of the fat-link irrelevant clover (FLIC) fermion action are examined. The improved chiral properties of fermion actions incorporating smoothed links are realised in the FLIC action where only the irrelevant operators of the fermion action are constructed with smoothed links. In particular, the histogram of the additive mass renormalisation encountered in chiral-symmetry breaking Wilson-type fermion actions is seen to narrow upon introducing fat links in the irrelevant operators. The exceptional configuration problem of quenched QCD is reduced, enabling access to the light quark mass regime of mπ/mρ≃1/3. In particular, quenched chiral nonanalytic behaviour is revealed in the light quark mass dependence of the Δ-baryon mass. FLIC fermions offer a promising approach to revealing the properties of full QCD at light quark masses. © 2005 Elsevier B.V. All rights reserved.S. Boinepalli, W. Kamleh, D.B. Leinweber, A.G. Williams and J.M. Zanottihttp://www.elsevier.com/wps/find/journaldescription.cws_home/505706/description#descriptio

    Scaling behavior of the overlap quark propagator in Landau gauge

    Get PDF
    The properties of the momentum space quark propagator in Landau gauge are examined for the overlap quark action in quenched lattice QCD. Numerical calculations are done on three lattices with different lattice spacings and similar physical volumes to explore the approach of the quark propagator toward the continuum limit. We have calculated the nonperturbative momentum-dependent wave function renormalization function Z(p) and the nonperturbative mass function M(p) for a variety of bare quark masses and perform an extrapolation to the chiral limit. We find the behavior of Z(p) and M(p) are in reasonable agreement between the two finer lattices in the chiral limit, however the data suggest that an even finer lattice is desirable. The large momentum behavior is examined to determine the quark condensate.Comment: 9 pages, 5 figures, Revtex 4. Streamlined presentation, additional data. Final versio
    • 

    corecore