183 research outputs found

    The effect of cure cycle heating rate on the fibre/matrix interface

    Full text link
    Development of civil aerospace composites is key to future &ldquo;greener&rdquo; aircraft. Aircraft manufacturers must improve efficiency of their product and manufacturing processes to remain viable. The aerospace industry is undergoing a materials revolution in the design and manufacture of composite airframes. The Airbus A350 and Boeing 787 (both due to enter service in the latter part of this decade) will push utilisation levels of&nbsp; composite materials beyond 50% of the total airframe by weight. This&nbsp; change requires massive investment in materials technology, manufacturing capability and skills development. The Quickstep process provides the ability to rapidly cure aerospace standard composite materials whilst providing enhanced mechanical properties. Utilising fluid to transfer heat to the&nbsp;&nbsp; composite component during the curing process allows far higher heat rates than with conventional cure techniques. The rapid heat-up rates reduce the viscosity of the resin system greatly to provide a longer processing window introducing greater flexibility and removing the need for high pressure during cure. Interlaminar fracture toughness (Mode I) and Interfacial Shear Strength of aerospace standard materials cured using Quickstep have been&nbsp;&nbsp;&nbsp; compared to autoclave cured laminates. Results suggest an improvement in fibre-matrix adhesion.<br /

    Evaluation of Mixed-Phase Microphysics Within Winter Storms using Field Data and In Situ Observations

    Get PDF
    It is hypothesized that microphysical predictions have greater uncertainties/errors when there are complex interactions that result from mixedphased processes like riming. Use Global Precipitation Measurement (GPM) Mission ground validation studies in Ontario, Canada to verify and improve parameterization

    Evaluation of Model Microphysics Within Precipitation Bands of Extratropical Cyclones

    Get PDF
    Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is ~0.25 meters per second too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were ~0.25 meters per second too slow, while the SBU-YLIN was 0.25 to 0.5 meters per second too fast. Overall, the BMPs simulate a size distribution close to the observed for D 6 mm in the dendrites, side planes, and mixed habit periods, the BMPs are likely not simulating enough aggregation to create a larger size distribution, although the MORR (double moment) scheme seemed to perform best. These SBNY results will be compared with some results from GCPEx for a warm frontal snow band observed at 18 February 2012

    Single-Molecule FRET Studies of Lysine Riboswitch Folding

    Get PDF

    A new short-faced archosauriform from the Upper Triassic Placerias/Downs’ quarry complex, Arizona, USA, expands the morphological diversity of the Triassic archosauriform radiation

    Get PDF
    The Placerias/Downs’ Quarry complex in eastern Arizona, USA, is the most diverse Upper Triassic vertebrate locality known. We report a new short-faced archosauriform, Syntomiprosopus sucherorum gen. et sp. nov., represented by four incomplete mandibles, that expands that diversity with a morphology unique among Late Triassic archosauriforms. The most distinctive feature of Syntomiprosopus gen. nov. is its anteroposteriorly short, robust mandible with 3–4 anterior, a larger caniniform, and 1–3 “postcanine” alveoli. The size and shape of the alveoli and the preserved tips of replacement teeth preclude assignment to any taxon known only from teeth. Additional autapomorphies of S. sucherorum gen. et sp. nov. include a large fossa associated with the mandibular fenestra, an interdigitating suture of the surangular with the dentary, fine texture ornamenting the medial surface of the splenial, and a surangular ridge that completes a 90° arc. The external surfaces of the mandibles bear shallow, densely packed, irregular, fine pits and narrow, arcuate grooves. This combination of character states allows an archosauriform assignment; however, an associated and similarly sized braincase indicates that Syntomiprosopus n. gen. may represent previously unsampled disparity in early-diverging crocodylomorphs. The Placerias Quarry is Adamanian (Norian, maximum depositional age ~219 Ma), and this specimen appears to be an early example of shortening of the skull, which occurs later in diverse archosaur lineages, including the Late Cretaceous crocodyliform Simosuchus. This is another case where Triassic archosauriforms occupied morphospace converged upon by other archosaurs later in the Mesozoic and further demonstrates that even well-sampled localities can yield new taxa

    Epilepsy in adults with mitochondrial disease: A cohort study.

    Get PDF
    OBJECTIVE: The aim of this work was to determine the prevalence and progression of epilepsy in adult patients with mitochondrial disease. METHODS: We prospectively recruited a cohort of 182 consecutive adult patients attending a specialized mitochondrial disease clinic in Newcastle upon Tyne between January 1, 2005 and January 1, 2008. We then followed this cohort over a 7-year period, recording primary outcome measures of occurrence of first seizure, status epilepticus, stroke-like episode, and death. RESULTS: Overall prevalence of epilepsy in the cohort was 23.1%. Mean age of epilepsy onset was 29.4 years. Prevalence varied widely between genotypes, with several genotypes having no cases of epilepsy, a prevalence of 34.9% in the most common genotype (m.3243A>G mutation), and 92.3% in the m.8344A>G mutation. Among the cohort as a whole, focal seizures, with or without progression to bilateral convulsive seizures, was the most common seizure type. Conversely, all of the patients with the m.8344A>G mutation and epilepsy experienced myoclonic seizures. Patients with the m.3243A>G mutation remain at high risk of developing stroke-like episodes (1.16% per year). However, although the standardized mortality ratio for the entire cohort was high (2.86), this ratio did not differ significantly between patients with epilepsy (2.96) and those without (2.83). INTERPRETATION: Epilepsy is a common manifestation of mitochondrial disease. It develops early in the disease and, in the case of the m.3243A>G mutation, often presents in the context of a stroke-like episode or status epilepticus. However, epilepsy does not itself appear to contribute to the increased mortality in mitochondrial disease

    Biomedical Open Source Software: Crucial Packages and Hidden Heroes

    Get PDF
    Despite the importance of scientific software for research, it is often not formally recognized and rewarded. This is especially true for foundation libraries, which are used by the software packages visible to the users, being "hidden" themselves. The funders and other organizations need to understand the complex network of computer programs that the modern research relies upon. In this work we used CZ Software Mentions Dataset to map the dependencies of the software used in biomedical papers and find the packages critical to the software ecosystems. We propose the centrality metrics for the network of software dependencies, analyze three ecosystems (PyPi, CRAN, Bioconductor) and determine the packages with the highest centrality
    • …
    corecore