629 research outputs found

    CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting

    Get PDF
    CRISPR/Cas9-based therapeutics hold the possibility for permanent treatment of genetic disease. The potency and specificity of this system has been used to target dominantly inherited conditions caused by heterozygous missense mutations through inclusion of the mutated base in the short-guide RNA (sgRNA) sequence. This research evaluates a novel approach for targeting heterozygous single-nucleotide polymorphisms (SNPs) using CRISPR/Cas9. We determined that a mutation within KRT12, which causes Meesmann's epithelial corneal dystrophy (MECD), leads to the occurrence of a novel protospacer adjacent motif (PAM). We designed an sgRNA complementary to the sequence adjacent to this SNP-derived PAM and evaluated its potency and allele specificity both in vitro and in vivo. This sgRNA was found to be highly effective at reducing the expression of mutant KRT12 mRNA and protein in vitro. To assess its activity in vivo we injected a combined Cas9/sgRNA expression construct into the corneal stroma of a humanized MECD mouse model. Sequence analysis of corneal genomic DNA revealed non-homologous end-joining repair resulting in frame-shifting deletions within the mutant KRT12 allele. This study is the first to demonstrate in vivo gene editing of a heterozygous disease-causing SNP that results in a novel PAM, further highlighting the potential for CRISPR/Cas9-based therapeutics

    A novel role for CRIM1 in the corneal response to UV and pterygium development

    Get PDF
    Pterygium is a pathological proliferative condition of the ocular surface, characterised by formation of a highly vascularised, fibrous tissue arising from the limbus that invades the central cornea leading to visual disturbance and, if untreated, blindness. Whilst chronic ultraviolet (UV) light exposure plays a major role in its pathogenesis, higher susceptibility to pterygium is observed in some families, suggesting a genetic component. In this study, a Northern Irish family affected by pterygium but reporting little direct exposure to UV was identified carrying a missense variant in CRIM1 NM_016441.2: c.1235 A > C (H412P) through whole-exome sequencing and subsequent analysis. CRIM1 is expressed in the developing eye, adult cornea and conjunctiva, having a role in cell differentiation and migration but also in angiogenesis, all processes involved in pterygium formation. We demonstrate elevated CRIM1 expression in pterygium tissue from additional individual Northern Irish patients compared to unaffected conjunctival controls. UV irradiation of HCE-S cells resulted in an increase in ERK phosphorylation and CRIM1 expression, the latter further elevated by the addition of the MEK1/2 inhibitor, U0126. Conversely, siRNA knockdown of CRIM1 led to decreased UV-induced ERK phosphorylation and increased BCL2 expression. Transient expression of the mutant H412P CRIM1 in corneal epithelial HCE-S cells showed that, unlike wild-type CRIM1, it was unable to reduce the cell proliferation, increased ERK phosphorylation and apoptosis induced through a decrease of BCL2 expression levels. We propose here a series of intracellular events where CRIM1 regulation of the ERK pathway prevents UV-induced cell proliferation and may play an important role in the in the pathogenesis of pterygium

    Keratin 12 missense mutation induces the unfolded protein response and apoptosis in meesmann epithelial corneal dystrophy

    Get PDF
    Meesmann epithelial corneal dystrophy (MECD) is a rare autosomal dominant disorder caused by dominant-negative mutations within the KRT3 or KRT12 genes, which encode the cytoskeletal protein keratins K3 and K12, respectively. To investigate the pathomechanism of this disease, we generated and phenotypically characterized a novel knock-in humanized mouse model carrying the severe, MECD-associated, K12-Leu132Pro mutation. Although no overt changes in corneal opacity were detected by slit-lamp examination, the corneas of homozygous mutant mice exhibited histological and ultrastructural epithelial cell fragility phenotypes. An altered keratin expression profile was observed in the cornea of mutant mice, confirmed by western blot, RNA-seq and quantitative real-time polymerase chain reaction. Mass spectrometry (MS) and immunohistochemistry demonstrated a similarly altered keratin profile in corneal tissue from a K12-Leu132Pro MECD patient. The K12-Leu132Pro mutation results in cytoplasmic keratin aggregates. RNA-seq analysis revealed increased chaperone gene expression, and apoptotic unfolded protein response (UPR) markers, CHOP and Caspase 12, were also increased in the MECD mice. Corneal epithelial cell apoptosis was increased 17-fold in the mutant cornea, compared with the wild-type (P < 0.001). This elevation of UPR marker expression was also observed in the human MECD cornea. This is the first reporting of a mouse model for MECD that recapitulates the human disease and is a valuable resource in understanding the pathomechanism of the disease. Although the most severe phenotype is observed in the homozygous mice, this model will still provide a test-bed for therapies not only for corneal dystrophies but also for other keratinopathies caused by similar mutations

    Development of DYNAMIX Policy Mixes - Deliverable 4.2, revised version, of the DYNAMIX project

    Get PDF
    This report documents the development of the initial dynamic policy mixes that were developed for assessment in the DYNAMIX project. The policy mixes were designed within three different policy areas: overarching policy, land-use and food, and metals and other materials. The policy areas were selected to address absolute decoupling in general and, specifically, the DYNAMIX targets related to the use of virgin metals, the use of arable land and freshwater, the input of the nutrients nitrogen and phosphorus, and emissions of greenhouse gases. Each policy mix was developed within a separate author team, using a common methodological framework that utilize previous findings in the project. Specific drivers and barriers for resource use and resource efficiency are discussed in each policy area. Specific policy objectives and targets are also discussed before the actual policy mix is presented. Each policy mix includes a set of key instruments, which can be embedded in a wider set of supporting and complementary policy instruments. All key instruments are described in the report through responses to a set of predefined questions. The overarching mix includes a broad variety of key instruments. The land-use policy mix emphasizes five instruments to improve food production through, for example, revisions of already existing policy documents. It also includes three instruments to influence the food consumption and food waste. The policy mix on metals and other materials primarily aims at reducing the use of virgin metals through increased recycling, increased material efficiency and environmentally justified material substitution. To avoid simply shifting of burdens, it includes several instruments of an overarching character

    Quantitative assessment of the conjunctival microcirculation using a smartphone and slit-lamp biomicroscope

    Get PDF
    Purpose: The conjunctival microcirculation is a readily-accessible vascular bed for quantitative haemodynamic assessment and has been studied previously using a digital charge-coupled device (CCD). Smartphone video imaging of the conjunctiva, and haemodynamic parameter quantification, represents a novel approach. We report the feasibility of smartphone video acquisition and subsequent haemodynamic measure quantification via semi-automated means. Methods: Using an Apple iPhone 6 s and a Topcon SL-D4 slit-lamp biomicroscope, we obtained videos of the conjunctival microcirculation in 4 fields of view per patient, for 17 low cardiovascular risk patients. After image registration and processing, we quantified the diameter, mean axial velocity, mean blood volume flow, and wall shear rate for each vessel studied. Vessels were grouped into quartiles based on their diameter i.e. group 1 (&lt;11 μm), 2 (11–16 μm), 3 (16–22 μm) and 4 (&gt;22 μm). Results: From the 17 healthy controls (mean QRISK3 6.6%), we obtained quantifiable haemodynamics from 626 vessel segments. The mean diameter of microvessels, across all sites, was 21.1μm (range 5.8–58 μm). Mean axial velocity was 0.50mm/s (range 0.11–1mm/s) and there was a modestly positive correlation (r 0.322) seen with increasing diameter, best appreciated when comparing group 4 to the remaining groups (p &lt; .0001). Blood volume flow (mean 145.61pl/s, range 7.05–1178.81pl/s) was strongly correlated with increasing diameter (r 0.943, p &lt; .0001) and wall shear rate (mean 157.31 s − 1, range 37.37–841.66 s − 1) negatively correlated with increasing diameter (r − 0.703, p &lt; .0001). Conclusions: We, for the first time, report the successful assessment and quantification of the conjunctival microcirculatory haemodynamics using a smartphone-based system. </p

    SEDLIN Forms Homodimers: Characterisation of SEDLIN Mutations and Their Interactions with Transcription Factors MBP1, PITX1 and SF1

    Get PDF
    BACKGROUND: SEDLIN, a 140 amino acid subunit of the Transport Protein Particle (TRAPP) complex, is ubiquitously expressed and interacts with the transcription factors c-myc promoter-binding protein 1 (MBP1), pituitary homeobox 1 (PITX1) and steroidogenic factor 1 (SF1). SEDLIN mutations cause X-linked spondyloepiphyseal dysplasia tarda (SEDT). METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effects of 4 missense (Asp47Tyr, Ser73Leu, Phe83Ser and Val130Asp) and the most C-terminal nonsense (Gln131Stop) SEDT-associated mutations on interactions with MBP1, PITX1 and SF1 by expression in COS7 cells. Wild-type SEDLIN was present in the cytoplasm and nucleus and interacted with MBP1, PITX1 and SF1; the SEDLIN mutations did not alter these subcellular localizations or the interactions. However, SEDLIN was found to homodimerize, and the formation of dimers between wild-type and mutant SEDLIN would mask a loss in these interactions. A mammalian SEDLIN null cell-line is not available, and the interactions between SEDLIN and the transcription factors were therefore investigated in yeast, which does not endogenously express SEDLIN. This revealed that all the SEDT mutations, except Asp47Tyr, lead to a loss of interaction with MBP1, PITX1 and SF1. Three-dimensional modelling studies of SEDLIN revealed that Asp47 resides on the surface whereas all the other mutant residues lie within the hydrophobic core of the protein, and hence are likely to affect the correct folding of SEDLIN and thereby disrupt protein-protein interactions. CONCLUSIONS/SIGNIFICANCE: Our studies demonstrate that SEDLIN is present in the nucleus, forms homodimers and that SEDT-associated mutations cause a loss of interaction with the transcription factors MBP1, PITX1 and SF1

    CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting

    Get PDF
    CRISPR/Cas9-based therapeutics hold the possibility for permanent treatment of genetic disease. The potency and specificity of this system has been used to target dominantly inherited conditions caused by heterozygous missense mutations through inclusion of the mutated base in the short-guide RNA (sgRNA) sequence. This research evaluates a novel approach for targeting heterozygous single-nucleotide polymorphisms (SNPs) using CRISPR/Cas9. We determined that a mutation within KRT12, which causes Meesmann's epithelial corneal dystrophy (MECD), leads to the occurrence of a novel protospacer adjacent motif (PAM). We designed an sgRNA complementary to the sequence adjacent to this SNP-derived PAM and evaluated its potency and allele specificity both in vitro and in vivo. This sgRNA was found to be highly effective at reducing the expression of mutant KRT12 mRNA and protein in vitro. To assess its activity in vivo we injected a combined Cas9/sgRNA expression construct into the corneal stroma of a humanized MECD mouse model. Sequence analysis of corneal genomic DNA revealed non-homologous end-joining repair resulting in frame-shifting deletions within the mutant KRT12 allele. This study is the first to demonstrate in vivo gene editing of a heterozygous disease-causing SNP that results in a novel PAM, further highlighting the potential for CRISPR/Cas9-based therapeutics
    • …
    corecore