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41 Abstract

42 Purpose The conjunctival microcirculation is a readily-accessible vascular bed 

43 for quantitative haemodynamic assessment and has been studied previously using a 

44 digital charge-coupled device (CCD). Smartphone video imaging of the conjunctiva, 

45 and haemodynamic parameter quantification, represents a novel approach. We 

46 report the feasibility of smartphone video acquisition and subsequent haemodynamic 

47 measure quantification via semi-automated means.

48 Methods Using an Apple iPhone 6s and a Topcon SL-D4 slit-lamp 

49 biomicroscope, we obtained videos of the conjunctival microcirculation in 4 fields of 

50 view per patient, for 17 low cardiovascular risk patients. After image registration and 

51 processing, we quantified the diameter, mean axial velocity, mean blood volume 

52 flow, and wall shear rate for each vessel studied. Vessels were grouped into 

53 quartiles based on their diameter i.e. group 1 (<11μm), 2 (11~16μm), 3 (16~22μm) 

54 and 4 (>22μm). 

55 Results From the 17 healthy controls (mean QRISK3 6.6%), we obtained 

56 quantifiable haemodynamics from 623 vessel segments. The mean diameter of 

57 microvessels, across all sites, was 18.23μm (range 6.6-39.2μm). Mean axial velocity 

58 was 0.49mm/s (range 0.12-0.79mm/s) and there was a modestly positive correlation 

59 (r 0.404) seen with increasing diameter, best appreciated when comparing group 4 

60 to the remaining groups (p<0.0001). Blood volume flow (mean 109.718pl/s, range 

61 11.28-502.19pl/s) was strongly correlated with increasing diameter (r 0.967, 

62 p<0.0001) and wall shear rate (mean 182.81s-1, range 55.11-546.69s-1) negatively 

63 correlated with increasing diameter (r -0.823, p<0.0001). 
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64 Conclusions We, for the first time, report the successful assessment and 

65 quantification of the conjunctival microcirculatory haemodynamics using a 

66 smartphone-based system.

67

68 Manuscript

69 I. Introduction

70 Cardiovascular disease (CVD) is a leading cause, globally, of mortality and morbidity 

71 while also being associated with a significant economic burden on health services1. 

72 CVD is caused by physiological changes and endothelial dysfunction, resulting in 

73 atherosclerosis, and it is accepted that these changes manifest earliest in the 

74 microcirculatory networks within the body2. Microcirculatory disease typically 

75 commences with endothelial dysfunction which may be clinically silent and, thus, 

76 precede the onset of symptoms3 or the occurrence of a major adverse 

77 cardiovascular event (MACE) e.g. myocardial infarction (MI) or cerebrovascular 

78 accident (CVA). Microvascular dysfunction is associated with increased mortality4 

79 and thus the study of microcirculations may provide a potential tool in disease 

80 screening, staging and management. Imaging of systemic microcirculations has 

81 been applied to and, in certain disease subsets, is used in every day current practice 

82 in assessing disease progression e.g. the retinal microcirculation in the assessment 

83 of diabetes mellitus, systemic hypertension, and sickle cell disease 5,6,7,8. The 

84 sublingual mucosa and the skin also represent accessible sites in which the 

85 microcirculation has been studied by videomicroscopy9.

86 The anterior segment of the eye contains the conjunctival microvasculature, a 

87 readily-accessible heterogeneous network of arterioles and venules adjacent to the 

88 limbal microcirculation, which gains its supply from the anterior ciliary branch of the 
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89 ophthalmic artery10. The conjunctival microvasculature allows for both non-invasive 

90 assessment of erythrocyte movement, and quantification of key vascular 

91 physiological parameters e.g. vessel width, blood flow axial velocity and blood flow 

92 rate11. 

93 The objective of this study was to evaluate the feasibility of assessing the 

94 conjunctival microcirculation using our novel combination of a smartphone and slit-

95 lamp biomicroscope. We aimed to develop an operator-friendly, pragmatic, safe and 

96 effective means of assessing this heterogeneous circulation, in addition to the 

97 quantification of the haemodynamic physiological parameters seen within a 

98 microcirculation.

99 A few groups have reported semi-automated or automated image analysis 

100 algorithms to assess the conjunctival microcirculation, using a slit lamp 

101 biomicroscope and a digital charge-coupled device (CCD) camera for image 

102 acquisition 12,13,14,15,16,17. Using such systems, the conjunctival microcirculation has 

103 been studied in patients with hypertension, diabetic retinopathy, and patients after 

104 ischaemic stroke18, 19, 20. In addition, one group has reported the application of such 

105 methods in patients of varying predictive cardiovascular risk, assessed by the 

106 Framingham risk score21.

107 Smartphone technology allows for remote monitoring and screening of many 

108 prevalent cardiovascular conditions, for example atrial fibrillation, and represents an 

109 important component of future healthcare and cardiovascular practice22. The 

110 literature is scarce regarding smartphone use to assess microcirculatory 

111 haemodynamics but the application of smartphone photography of the fundus has 

112 been reported in diabetic and hypertensive patients23, 24, 25. There are some studies 

113 describing smartphone-led image analysis of the conjunctiva in the assessment of 
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114 patients with anaemia26,27 and, also, quantification of conjunctival “redness” i.e. 

115 hyperaemia28. In addition, the smartphone-based biometric has been studied on the 

116 visible vascular patterns on whites of the eye29 but, at this time, there are no studies 

117 that describe the assessment or quantification of conjunctival haemodynamics using 

118 a smartphone and slit-lamp combination. 

119

120 II. Materials and Methods

121 A.  Subjects

122 This research study was approved by the Research and Development review boards 

123 of the Ulster University (UU) and the Belfast Health and Social Care Trust (BHSCT). 

124 All subjects were provided with verbal and written information, prior to study 

125 enrolment, in accordance with the Declaration of Helsinki. Exclusion criteria included 

126 inability to consent, prior myocardial infarction (MI), uncontrolled systemic 

127 hypertension, recent history of conjunctival inflammation, prior refractive surgery, 

128 used ocular medications (other than artificial tears) and current use of contact 

129 lenses.

130 We recruited 17 healthy volunteers to this feasibility study. The mean age for the 

131 population studied was 52.5 ±10.3years, IQR 15 years. Sex distribution was roughly 

132 equal with 9 (53%) males and 8 females (47%). No patients had a history of prior MI, 

133 cerebrovascular accident (CVA), or diabetes mellitus. The QRISK 3 

134 (https://qrisk.org/three/) score algorithm was used to estimate each volunteer’s 10-

135 year risk of future heart attack or stroke. The QRISK 3 algorithm is based on the 

136 presence/lack of specific risk factors for CVD e.g. smoking, diabetes mellitus, 

137 hypertension, family history angina, chronic kidney disease, age, sex, body mass 

138 index, history of atrial fibrillation, use of regular steroid tablets, presence of chronic 
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139 inflammatory disease, and cholesterol profile. It has been well-validated in our 

140 population30. The mean QRISK 3 score was 6.6 ±9%, IQR 6.9%, which correlates 

141 with a “low-risk” population (<10%). Table 1 is a summary of the baseline 

142 demographics and clinical observations for the study group.

Number n=17

Male sex, n (%) 9 (53.0)

Age, years ±SD 52.5 ±10.3

QRISK 3 score, % ±SD 6.6 ±9

Systolic blood pressure, mmHg ±SD 125 ±22

Diastolic blood pressure, mmHg ±SD 77 ±12

Heart rate, bpm ±SD 70 ±9

Prior MI/CVA/Diabetes mellitus 0

143 Table 1. Baseline characteristics of the study group (n=17) with continuous variables 

144 expressed using their mean and standard deviation. Categorical variables have been 

145 expressed as a number and percentage of the total within that variable.

146 B. Image Acquisition

147 Image acquisition was achieved via two main hardware components.  Firstly, primary 

148 illumination and magnification of the ocular vascular structure was achieved using a 

149 conventional slit lamp biomicroscope, Topcon SL-D4 (Topcon Medical Systems Inc., 

150 USA), capable of providing a maximum magnification of 40x.  Secondly, images 

151 provided by the slit lamp biomicroscope were further magnified and stored using a 

152 smartphone camera. The smartphone used in the system is an Apple iPhone 6s 

153 (Apple, Inc., USA).  A number of video record settings were tested and the optimal 

154 configuration set at a resolution of 1920 x 1080 pixels, captured at 60 frames per 

155 second. The iPhone video recorder is capable of providing a further magnification of 
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156 3x. Coupling of the smartphone to the eyepiece of the slit lamp biomicroscope was 

157 achieved using a bespoke adapter developed by Zarf Enterprises (Zarf Enterprises., 

158 USA). Smartphone cameras typically give very little control over camera properties 

159 (focus, ISO, shutter speed, aperture) due to an emphasis on ease-of-use for 

160 everyday consumers, while also generating compressed video files (h.264 

161 compression in the case of the iPhone 6s). To help overcome these issues we 

162 captured our data using a  third-party application “ProMovie Recorder” 

163 (www.promovieapp.com). We used constant settings for all images (iso/shutter 

164 speed/ focus/ exposure) and used the maximum compression bit-rate available to 

165 reduce compression artefacts. The video zoom setting was locked at 2x, providing a 

166 1:1-pixel mapping of the camera sensor at 1080p resolution and thus avoiding 

167 interpolation artefacts. To obtain an accurate pixel to mm conversion factor we 

168 calibrated the system using a digital caliper and 1mm microscope calibration reticle, 

169 deriving a conversion factor of 552 22.6pixels/mm. We obtained one video (5-15s) 

170 from 4 distinct field of views i.e. medial and temporal conjunctiva in both eyes. Fig.1. 

171 To reduce eye motion and blinking we used an external fixation target as a focal 

172 point for each patient. We acquired only 4 videos (5-15s) per patient to minimise the 

173 risk of potential adverse effects, e.g. slit-lamp light exposure. There were no reported 

174 adverse effects at the time of, or after, image acquisition. Patients were imaged in 

175 the same clinical room under constant temperature and lighting settings. 
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176

177 Fig. 1. Two fields of view (FOV) for the left eye of a healthy subject, with the 

178 medial and lateral FOV being labelled (red arrows) the left nasal (LN) and left 

179 temporal (LT) respectively. 

180

181

182 C. Image Processing 

183 1. Pre-Processing and Vessel Segmentation

184 An initial pre-processing procedure was carried out for each video file. Firstly, the 

185 longest stable sequence of frames was manually selected on the basis of the 

186 vasculature being in focus, there being no blinking or large sudden movements of 

187 the eye, and the FOV not drifting by more than ~25% of the width of the frame. Next 

188 the green channel, which gave the highest vessel contrast, was extracted and 

189 information from the red channel used to correct for uneven illumination through 

190 subtraction. The sharpest frame in the sequence was then selected as a reference 

191 frame and all other frames registered to it through an affine registration procedure31, 

192 with a single composite image generated by averaging all registered frames. After 

193 applying a “vessel enhancement filter”32 (Fig.2 (a)), a binary map of the conjunctival 
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194 vasculature and corresponding centrelines were obtained via standard skeletisation 

195 techniques. Finally, the connected vessel network was broken into individual vessel 

196 segments (Fig.2 (b)) by setting the branch points’ neighbouring pixels to zero, and 

197 centreline segments, containing more than 30 pixels, selected for further 

198 assessment. 

199

200 Fig. 2. Microvascular network after image processing: (a) the vessel network after 

201 filtering; (b) the vessel centreline (in red) and intersection points (in blue) overlaid on 

202 the mean of vessel images. 

203 2. Vessel Diameter (D)

204 The Euclidean Distance Transform (EDT) was proposed for vessel diameter 

205 estimation, which is easier to implement in comparison to the commonly used 

206 method via full width at half maximum (FWHM). The value at each pixel of EDT was 

207 calculated based on the Euclidean distance between the pixel and its nearest 

208 nonzero pixel in the binary vessel image. The centreline of the vessel was used to 

209 obtain the central EDT values and thus the radius along the vessel axis. The 

210 average of diameters along the vessel length provided the final vessel width 

211 estimation. An example based on simulation is illustrated in Fig.3.  
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212

213 Fig. 3. Simulation for vessel diameter estimation: (a) three vessels are generated 

214 with mean diameter 25.3 pixels,16.5 pixels, and 8.3 pixels, respectively; (b) the 

215 vessel centreline, end points and branch points overlaid on the binary vessel 

216 image; (c) EDT of the binary vessel image. The mean of estimated diameters via 

217 EDT are 25.9 pixels, 16.6 pixels, and 8.6 pixels, respectively. 

218 Given the complex and heterogeneous distribution of conjunctival microvessels, we 

219 applied a grouping classification to our results, described in previous work, based on 

220 vessel D i.e. group 1 (<11μm), group 2 (11-16μm), group 3 (16-22 μm) and group 4 

221 (>22 μm)11. 

222 3. Axial velocity (Va) 

223  The blood flow Va in a single vessel segment was estimated based on the spatial-

224 temporal image (STI), with the change in intensity in STI reflecting erythrocyte 

225 movement through the vessel. Since STI signal is the one dimension of space plus 

226 time, i.e., a 1D+T signal, a novel approach based on spatial temporal 1D+T 

227 continuous wavelet transform (1DTCWT) is proposed for Va estimation. The CWT 

228 method has been used previously as a spatiotemporal filter for motion capture of 

229 1D+T signals for moving target tracking and parameter calculation33, but not yet 

230 exploited in microvascular blood flow velocity estimation. Firstly, 2D fast Fourier 

231 transform (FFT) is performed for STI. The velocity vector space is defined and 
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232 1DTCWT is then run at each time interval. The energy is subsequently calculated 

233 based on the 1DTCWT output. The velocity is obtained by searching the maximum 

234 energy point as shown in Fig.4. The average of the absolute velocity across all 

235 frames was used as the final estimation of Va. The method was programmed in 

236 MATLAB2017 together with an open source implementation of CWT 34. 

237

238 Fig.4. Simulation for velocity estimation based on 1DTCWT. (a) synthetic STI 

239 generated by shifting Gaussian signal with speed of 1 pixel/frame; (2) plot of 

240 signals at the 10th, 30th and 50th frames, which shows the Gaussian signal 

241 shifting in distance; (c) a colour spectrum map via 1DTCWT shows the velocity is 

242 corresponding to the maximum of the energy (at 1 pixel/frame). 

243 4. Blood flow (Q) and wall shear rate (WSR)

244 Using the measurements for D and Va, we calculated Q and WSR using previously 

245 described methods 11,12. Q provides key information regarding the architecture and 

246 function of the vascular system, whereas WSR is the blood velocity at a specific wall 
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247 position, within a vessel, and represents a surrogate for the pressure exerted by 

248 blood within its’ respective transport vessel 35, 36, 37.

249

250 5. Statistical analysis

251 For statistical analysis SPSS for Apple iOS version 25 (property of IBM) and R 

252 version 3.5.3 (www.r-project.org) were used. Continuous variables were described 

253 using the mean, standard deviation of the mean and interquartile range (IQR) for the 

254 variable. Categorical variables were described as a number and percentage of the 

255 total category number to which the variable belonged. Sample origin, distribution and 

256 variance were assessed by non-parametric ANOVA (Kruskal-Wallis test). Correlation 

257 analysis (Spearman rank), with a Loess regression fit, was applied to assess 

258 relationships between D and independent variables, principally Va, Q and WSR. 

259 Non-parametric ANOVA (Kruskal-Wallis) with or without Dunn's post-hoc tests was 

260 used to compare D, Va, W, and WSR by vessel width group, with the tests being 

261 conducted separately across site, i.e., left/right nasal and temporal, or for all sites 

262 merged.

263 III. Results

264 For the 17 healthy patients studied, using our semi-automated approach, we were 

265 able to obtain repeated measurements in 623 vessel segments (mean 37 segments 

266 per patient), hereafter referred to as “microvessels”, which exhibited observable flow. 

267 The mean diameter (D) of microvessels, across all sites, was 18.2μm (range 6.6-

268 39.2μm). Group 4 (>22μm) microvessels were measured most frequently, with group 

269 1 (<11μm) being the least commonly encountered i.e. 295 vs 64 microvessels 

270 respectively. Mean Va was 0.49mm/s (range 0.12-0.79mm/s), Q 109.72pl/s (range 
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271 11.28-502.19pl/s) and WSR ranged between 55.11-546.69s-1, with a mean WSR of 

272 182.81s-1. The mean and SD of all microvessel conjunctival haemodynamic 

273 parameters are illustrated in Table 2. Statistical comparisons for Va, Q and WSR 

274 were made within the vessel groups. There was a statistically significant increase in 

275 Q for increasing diameter size (p<0.0001), with a statistically significant inverse 

276 correlation between WSR and increasing diameter size (p<0.0001). Va tended to 

277 increase with increasing microvessel diameter and was significantly elevated in 

278 group 4 (>22μm) vessels, compared to the remaining three groups (p<0.0001).

279

Group D 

μm

No. vessels 

N=623

D (μm) Va 

(mm/s)

Q (pl/s) WSR (s-1)

<11

Group 1

64 9.1 ±2.8 0.45 ±0.05 23.65 ±2.96 332.75 

±60.75

11~16

Group 2

113 13.44±3.7 0.44 ±0.06 46.81 ±8.02 200.19 

±32.89

16~22

Group 3

151 19.2 ±3.5 0.47 ±0.06 97.13 ±17.21 136.67 

±20.35

>22

Group 4

295 26.9 ±2.7 0.56 ±0.09 224.45 

±66.35

115.27 ±17.7

p<0.0001 p<0.0001 p<0.0001

Mean 18.2 0.485 109.718 182.81

Range 6.6-39.2 0.12-0.79 11.28-502.19 55.11-546.69

Interquartile 

range (IQR)

12.74-24 0.42-0.55 39.86-161 116.33-

221.72
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280 Table 2. Summary of haemodynamic measures D, Va, Q and WSR based on the 

281 vessel diameter groups (1-4).

282 Across site (field of view) comparisons were made with the haemodynamic 

283 measures. Q and WSR did not statistically differ between the 4 image fields. There 

284 was a statistically higher Va noted in the right nasal (RN) hemisphere compared to 

285 the left nasal (LN, (p = 0.0003)), for which the clinical significance is unknown and 

286 may require further exploration. The relationship between the haemodynamic 

287 measures and similarities for each field of view is shown in Fig.5. Note the elevated 

288 Va in the RN FOV, compared to the other FOVs, as before.

289

290

291 Fig.5. Summary of diameter D (μm), Va (mm/s), Q (pl/s) and WSR (s-1), for each field 

292 of view i.e. left nasal (LN), left temporal (LT), right nasal (RN) and right temporal 

293 (RT).

294 The correlation, expressed via the correlation coefficient (r) and the best fit trend line, 

295 between increasing microvessel diameter and the haemodynamic measures Va, Q 

296 and WSR were consistent across the 4 fields of view, which are individually 
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297 illustrated in Fig.6a-d. 
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301

302 Fig.6. Correlation plots between microvessel diameter D (μm) vs Va (mm/s), Q (pl/s) 

303 and WSR (s-1) for each field of view ((a) RT, (b) RN, (c) LT, (d)LN).

304 A summary of the correlations between microvessel D and the quantified 

305 haemodynamic measures are illustrated in Fig.7. demonstrating the strong overall 

306 linear correlation with Q and WSR (r 0.967, r -0.823 respectively). A modest 

307 correlation was seen for Va (r 0.404).

308

309 Fig.7. Correlation plots between microvessel diameter D (μm) vs Va (mm/s), Q (pl/s) 

310 and WSR (s-1) across all sites.

311 The correlations between increasing vessel diameter and Va, Q, and WSR are in 

312 keeping with that reported in previous work11,12, whereby similar fluid dynamics and 

313 microvascular relationships have been observed.
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315

316 IV. Discussion

317 The conjunctival microcirculation represents a readily-accessible vascular network 

318 for non-invasive assessment. Physiological measures in the conjunctival 

319 microcirculation display the same trends and correlations as they do elsewhere in 

320 the circulation and, based on this rationale, may represent a key microcirculation that 

321 could be assessed in the evaluation of circulatory health and, if so, correlated with 

322 risk. Correlations between cardiovascular risk estimation and quantitative 

323 conjunctival haemodynamic measures, namely velocity and blood flow, were 

324 demonstrated in previous work21.

325 In recent years, there have been several reports regarding the clinical utility of 

326 conjunctival microcirculatory study. Conjunctival haemodynamic assessment has 

327 extended to patients with diabetes mellitus, in correlation with diabetic retinopathy 

328 status, with differences between Va, Q and WSR being observed for differing grades 

329 of retinopathy19. Quantitative assessment of the conjunctival haemodynamics was, 

330 also, evaluated in patients with ischaemic unilateral stroke and Va was found to be 

331 significantly lower in the ipsilateral eye to the stroke compared to the contralateral 

332 eye, demonstrating the physiological relationship shared by the internal carotid 

333 arterial system and the conjunctival microcirculation20.

334 We have described the application of smartphone technology, combined with a slit-

335 lamp, in the quantitative assessment of conjunctival haemodynamics, namely  D, Va, 

336 Q and WSR. With our approach, we have demonstrated the feasibility of obtaining 

337 haemodynamic results, similar to the correlations and trends described elsewhere by 

338 other groups using a digital charged coupled camera. We have done so, though, 

339 using a smartphone which served as an efficient, pragmatic and reliable means of 
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340 acquiring the conjunctival images for subsequent analysis. Our system performed as 

341 well as the more complex and time-consuming CCD devices and represents a 

342 potential major advancement within the scope of conjunctival microcirculation 

343 assessment. Our biomicroscope/smartphone apparatus and post-capture analysis is 

344 validated by comparison to results obtained previously. We obtained a mean 

345 diameter of 18.2μm (range 6.6-39.2μm) in 623 microvessels, selected manually 

346 according to the quality of STI, on post-processed images and these results are 

347 similar to, and within range, of that reported by other groups11. The strong 

348 positive/negative correlation between microvessel diameter (D) and blood flow (Q)/ 

349 wall shear rate (WSR), reported in the present work, is reflective of the dependence 

350 of Q/WSR with increasing D, as represented in fluid dynamics formulae and  

351 observations reported in other studies11, 12,13. We did not find as strong a correlation 

352 for axial velocity (Va) and D (r = 0.404), but it is important to note that the calculation 

353 of both D and Va, using our previously described methods, are entirely independent 

354 of each other and that similar relationships between D and Va have been reported 

355 previously12, 16. Statistical significance, though, was observed for group-4 vessels 

356 and their associated Va, compared to groups 1-3 (p<0.0001). 

357 Combined smartphone and slit-lamp based quantitative assessment has been 

358 demonstrated in this present work and it is feasible that it could be of potential future 

359 application in the assessment of cardiovascular health. We studied a “low-

360 cardiovascular risk” patient group, as evidenced by a mean QRISK 3 score of 6.6%. 

361 QRISK 3 is a well-validated 10-year cardiovascular risk assessment, with the largest 

362 sample size of contemporary cardiovascular estimation systems, implemented within 

363 major European guidelines30. 
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364 We acknowledge certain limitations of our study. We, similar to other feasibility 

365 studies13, have reported results for all visible microvessels without separating 

366 arterioles and venules. The feasibility of artery-vein classification, using our 

367 approach, in the conjunctiva requires further exploration, which we intend to pursue.  

368 In addition, cardiac-gated haemodynamic measures, primarily end-systolic and end-

369 diastolic measures using conjunctival vessel pulse waveform characteristics, have 

370 been reported previously and could be of potential use in future clinical application 

371 with certain cardiovascular disease subsets35. A key aim of our future work is to 

372 implement and validate a fully automated smartphone-based approach to remove 

373 potential human error, promote consistency, and improve the efficiency of the 

374 examination.  By quantifying the conjunctival haemodynamics our method potentially 

375 allows the inexpensive assessment of patients with established cardiovascular and 

376 systemic disease, with promise for improving the diagnosis, risk stratification and, 

377 potentially, evaluating disease status and treatment modification of cardiovascular 

378 disease(s). The addition of smartphone technology, with its application (APP) 

379 versatility, wealth of data management, and computerised machine learning 

380 algorithms, modernises the slit-lamp biomicroscope assessment of the conjunctival 

381 microcirculation.  

382 V. Conclusion

383

384 We have described, for the first time, the successful measurement of dynamic 

385 microcirculatory haemodynamic measures using smartphone technology combined 

386 with a slit-lamp biomicroscope. Our semi-automated method found a positive linear 

387 relationship between increasing microvessel diameter (D) and blood flow (Q). An 

388 inverse relationship was observed for wall shear rate WSR, a direct surrogate of 
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389 WSS. These findings corroborate prior ones, for the same haemodynamic measures, 

390 reported by groups using a CCD camera for image acquisition, and support the 

391 feasibility of our smartphone-derived approach. Image acquisition was performed 

392 without clinical complication in a group of patients with low cardiovascular risk. The 

393 ease and speed with which images were reliably acquired holds promise for the 

394 future clinical application of this smartphone-based conjunctival microcirculatory 

395 assessment model.

396
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