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Modelling Students’ Thematically
Associated Knowledge: Networked
Knowledge from Affinity Statistics

Ismo T. Koponen

Abstract Students’ knowledge is often organized around relations and key con-
cepts but it sometimes also resembles associative knowledge, where connections
between knowledge elements are based on thematic resemblance without overarch-
ing organization based on substantiation or logical reasoning. Because it is known
that associative knowledge, while important for learning too, may be very differently
structured from more organized knowledge, a closer look on students’ thematically
associated knowledge is warranted. In this study we model students’ thematically
associative knowledge as a network of pairwise associative connections. The
model is based on the assumption that associative knowledge is by a large degree
governed by the intrinsic affinity of the knowledge elements that consists of the
thematically associated knowledge base. The model introduced here makes minimal
assumptions about the affinity distribution of such knowledge. The results show that
in this case, under very general conditions, the network of associative knowledge
is characterized by inverse power laws of degree, eigenvector, and betweenness
centralities. These results agree with the empirically found properties of students’
associative networks.

1 Introduction

Knowledge acquisition and processing strategies are specific for the context of
learning and for type of targeted knowledge. A starting point for learning is often
familiarization with key concepts or key knowledge items, which then are processed
further and integrated into more coherent knowledge structures [9, 15]. In that
knowledge processing, students’ familiarization with the target knowledge often
starts with proposing thematic connections between the knowledge items and their
possible relationships, for example in the form of concept maps or mind maps.
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124 I. T. Koponen

Such connections can be taken as basically pairwise (dyadic) thematic word or term
associations, where associative connections are established on the basis of thematic
resemblance or kinds of family resemblance, but where no detailed substantiation
or justification of connections is provided [17, 19]. The knowledge processing may
then continue with more organized strategies and concept map-type scaffoldings in
the form of integrated knowledge systems [9], known to be useful in a variety of
learning contexts, for example equally useful in learning science [1, 11, 15, 18, 19]
as in learning history [22].

Cognitively oriented research of learning claims that associative knowledge is
different from knowledge which is structured through more complex relational
dependencies [7, 8, 15]. This may well hold also for thematically associated
knowledge, where common theme or topic is the basis of associative connections.
The difference between such thematically associative and structured knowledge was
noted also in a study focusing on how students organize their knowledge using
concept maps [14]. A recent empirical study [13] shows that in the context of
history of science, at least students’ preliminary knowledge is structured differently
than substantiated knowledge [12]. To understand better students’ knowledge
organization strategies a recent study modelled it in the form of concept networks by
using simple linkage-motifs to generate the concept networks. The model produced
networks which structurally closely match concept networks made by students,
when the construction of networks is rule-based [12]. In that case, networks
have degree distributions which are centered and thus have a scale, and have a
relatively high clustering [12]. Motivated by the notion that thematically associative
knowledge[13] may be very different from rule-based, relational knowledge [12],
we focus here on modelling associative networks, which are based on pairwise
(dyadic) knowledge item associations and model such networks as affinity-based
networks.

We model here knowledge item networks and their properties as they are reported
in a recent study addressing the thematically associative knowledge items in the
context of history of science [13]. In that study a group of 25 students was involved.
The set of knowledge items came from preparatory tasks to explore the history of
science over 3 centuries between 1550 and 1850 and how that history of science was
embedded as a part of the culture, society, and politics of that same era [13]. This
data consisted of about 1300 different knowledge items and about 2500 different
pairwise thematically associative connection between them. The study showed that
resulting network was characterized by a fat-tailed distribution of node degrees
[13]. Also betweenness centrality was found to be distributed according to fat-
tailed distribution. In all cases, the distributions were reasonably well-fitted by an
inverse power law distributions, which allowed to describe them by using a single
relevant parameter, power A, where 1 < A < 2. In what follows, we refer to such
heavy-tailed distributions as inverse power laws. The present study concentrates on
rationalizing a generative model, which can reproduce the inverse power laws of
centrality distributions as found in the real thematically associative networks.

We show that to reproduce the empirically found properties of students’ networks
as reported in Ref. [13] we can construct a kind of a minimal model as an affinity-
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based network [2, 6, 21], with very minimal assumptions about the distribution of
the affinities. The resulting network comes close to the empirically found networks
when students produce connection between knowledge elements based on thematic
associations [13], but are very different from networks found in cases where
students’ organize their knowledge in rule-based ways [12]. The results support the
notion that the ways the students handle knowledge organized around associative
connections leads to very different knowledge organization in comparison to
situations, where they use relational, rule-based dependencies; both strategies lead
to simple regularities but different regularities.

2 The Empirical Case: Associative Knowledge

The empirical findings of associative network and its properties that will be mod-
elled here are based on results recently reported in an empirical study addressing
how students make thematic associative connection between different knowledge
items in a science (physics) history course for a third and fourth year students (pre-
service teachers). The course aim was to discuss the history of physics as part of
science history, part of the history of humanities and arts, and as part of general
history, in expanding circles. The results reported in Ref. [13] are based on data
coming from pre-tasks on which students explored and constructed connections
between the historical characters, scientists, ideas, inventions and institutions etc.
they thought were of major interest or importance for history of science and history
in general. Students reported the connections in form of pairwise associations
(dyads), forexample [galilei <> heliocentricmodel ]. That data was used
in Ref. [13] to construct a complex, thematically associative network of about 1300
nodes and 2500 links. Further details of the course, analysis of the empirical and
results are reported in Ref. [13].

The main finding of the empirical study was that thematically associative
networks, in the group-level when all student networks were collated, had heavy-
tailed distribution of degree centrality D and betweenness centrality B. What is
of interest here for modelling is the result that values of D and B turned out to
be heavy-tailed and to have approximately an inverse power law type distribution
with the inverse power A € [1.5,2.0]. Of course, the networks were not scale
invariant and inverse power law should be taken only as an appropriate fit and in
sense revealing the heavy-tailed nature of distribution of values D and B [13].

3 The Model

The basic assumption of the model is that the structure of the students’ thematically
associative knowledge as it is captured by the network consisting of all different
pairwise connections is determined solely by the intrinsic affinity o) of the
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knowledge elements k = 1,2, ..., N. The intrinsic affinity is for some knowledge
elements substantially higher than for some other elements. The formation of links
between knowledge elements is determined also solely by their affinity. The affinity
ok, however, cannot be directly available to students. A more plausible assumption
is that affinity related ranking Ry of knowledge elements is the basis for forming
the linkages. Here, we assume that the appropriate ranking is simply equal to the
cumulative distribution Ry of affinities

k N
Re=) i/ Y o, Reel0,1] (1)

We next assume that a characteristic value R exists, which may depend on task,
time allowed for the task, and the average competency of students participating in
completion of the task. The probability m; that a given knowledge element & is
linked to another knowledge element is then assumed to correspond to a maximally
uncertain choice under this simple constraint. The probability of formation of a link
between knowledge elements p and g is then assumed to be proportional to the
product 7, m,.

The probability s is now through maximization of the information theoretical
(Shannon-Jaynes) entropy function [10]. Here, in what follows, to allow as broad a
generality as possible, we adopt the generalized (Tsallis) g-entropy [16, 23-25] in
the form

qué[l—Zn;H/], ge 1-1,1[ 2)

The exponent g governs the non-extensivity of the entropy. The normal, extensive
Shannon-Jaynes entropy I = — ) . m; log 7; is recovered at the limit g — 0 [16,
23]. The next step is then to introduce multipliers for variational maximization of
the entropy function in Eq. (2). The resulting distribution j, which maximizes the
q-entropy given the constraint R = constant, is a q-exponential [16, 25] (for details
of derivation, see Ref. [16])

1/q
q
= —BR , wh =11 3
wx = 7 exp,[—P R] ere exp,[x] |: + ] qx] (3)

The function exp, [x] is a q-deformed (or g-generalized) exponential function which
is reduced to the normal exponential function in limit ¢ — 0. The parameter j
is the multiplier corresponding to the constraint that R is kept constant. Note that
now B < 0 because Ry — 1 when k — o0 and exp, [x] must be an increasing
function [16, 25]. Another multiplier corresponding to the normalization condition
1s absorbed in normalization rg. As the functional form of 7; is now known, we
require that 7 — 1, when Ry — 1. This fixes the normalization coefficient to a
value 7o = 1/[1 — Bq/(1 + q)], where 8 < O.
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A similar result as in Eq.(3) is obtained through entirely different chain of
arguments, starting from affinity distribution and finding a linking probability, which
leads to an inverse power law type degree distribution but which does not directly
depend on affinity distribution but only through the cumulative distribution Ry [21].
The derivation in Ref. [21] shows that it is always possible to find an affinity
distribution which satisfies Eq. (3) for a given power A of the inverse power law
for degree distribution for node degrees d of the form

Pd)xd™, r>1 (4)

The advantage of derivation in Ref. [21] is explicit connection between the
parameters appearing in linking probability to the power of degree distribution in
Eq. (4) and to minimum and maximum degrees ki, and knax, respectively, allowed
by the choice of the parameters. We utilize these results and rewrite the parameter
dependencies of Eq. (3) as follows:

g=1—A, re ]l,2] (5)
l_rk—l 3—A

r
ﬂ:ﬁ<0 and ﬂozm (6)

where r = kmin/kmax << 1. With this parameterization the linking probabilities 7y
should lead to an inverse power law degree distribution P (d) with power A. In what
follows, we generate networks based on the linking probability given by Eq. (3) and
with parameters A and r as defined by Egs. (4)—(6).

4 Simulations

The simulations to generate networks and their analysis are carried out by using
the IGraph package [3]. IGraph provides functionality for generating efficiently
affinity-based networks simply by providing the probabilities ; for the routine
IGStaticFittnessGame. The output of the routine is network with a pre-
determined number of links, linked according to the probabilities ;. From these
networks, we measure distributions of: (1) Degree centrality D, (2) eigenvector
centrality E, (3) betweenness centrality B, (4) Katz-centrality K, and (5) closeness
centrality Cc. In addition, the average value C of local clustering coefficient and
assortativity A is obtained. The definition of these standard network measures is as
usual [4, 5]. As a null-model to compare the stability of results when linkages are
changed we use networks obtained by rewiring the simulated network but preserving
the degree sequence. In all rewirings, the IGraph routine IGRewire is used with
15,000 rewirings. First, we study the minimal model where no modular structure is
introduced. Second, effects of modularity are studied by using a simple, stratified
model of modularity. Modules are introduced in three levels L = 1,2, and 3,
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so that level L has 3£~! modules, where M; = aX"1My/(9 + 3o + o? with
a € [1, 3] is the number of links in each set of module, not contained in lower
level modules. My is the total number of links. Initially, a set of affinities is assigned
to all 9 level 3 modules. As will be seen, in case of present minimal model rewired
networks are expected to have identical properties in comparison to the original
ones, while modular structure affects slightly the eigenvector, betweenness, and
Katz-centralities.

Simulations are carried out for networks of sizes N = 300, 600, and 1200,
corresponding to sizes from the smallest to the most extensive one found in the
empirical samples and in the aggregated sample. The values of lambda studied are
A = 1.1, 1.3, 1.5, and 1.9, also corresponding to the lowest and highest values
found in the empirical sample. Similarly, values of the parameter r are chosen from
r = 0.5 x 107! to 8 x 1073 to correspond to a cut-off degree in the range from
100 to 200, slightly more than expected in the empirical case where degree 70 is
maximum. With these choices, the number of nodes connected in simulations is
comparable to empirical cases. No detailed match, however, with empirical data is
attempted, because the data-sets are too limited to allow a meaningful quantitative
comparisons. The simulations and parameters are chosen to provide only a plausible
qualitative agreement with the empirical data.

5 Results

Simulation results for the distributions of degree, eigenvector, and betweenness
centralities D, E, and B, respectively, are shown in Fig. 1. The results show
that these distributions can be reasonably well fitted with the inverse power law
as predicted. The detailed value of the powers of inverse power law fits slightly
depends on parameter r. In Fig. | the average corresponding three different choices
of r are reported. The values for the powers Ax for centralities X € {D, E, B}
are obtained by fitting the inverse power law to the simulated distributions shown
in Fig. 1. The detailed breakdown of simulation results for the powers Ay obtained
from simulations with A = 1.3, 1.5, 1.7, and 1.9 and for three different values r
and the corresponding averages are reported in Table 1. The Katz-centrality is not
shown for these cases, because it cannot be fitted with power law very reliably and,
moreover, for the simple, un-modular model provides no additional information. In
modular case, however, it becomes useful and provides information of the effects
of modularity. The average values Cc and C; of closeness centrality and local
clustering coefficient, respectively, and the assortativity A are also reported. In all
cases, the robustness of results under rewiring which preserved the degree sequences
was tested by using the rewiring IGRewire. The slight changes in distributions that
were observed are too small to be distinguishable in the scatter plots in Fig. 1.

The power Ap obtained for the degree centrality distributions is in all cases
slightly larger than the parameter value A which, according to the theoretical
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Fig. 1 Distributions of degree (D) , eigenvector (E), and betweenness (B) centralities. The values
of E and B are scaled to range from 0 to 1. Results are shown for parameter A = 1.3, 1.5, and
1.9, in each case for three different cut-off parameters S. In each case A,y is the average of the best
fits to inverse power law -type part of curves as reported in Table 1. All results are based on 1000
repetitions

prediction, should determine the power of degree distribution and A p = A. However,
with increasing values of A and decreasing values of r, the cut-off effects and finite
size effects are reduced, inverse power law dependence spans a more extensive
region of data and, consequently, Ap — A.

The eigenvector and betweenness centralities reasonably well follow power laws
when the values of these centralities are large enough and exceed the relative
value of 0.02. The power law dependence is expected on the basis of previous
studies, where affinity-based models with power law degree distribution are also
seen to have inverse power law distribution of betweenness centralities [2, 6].
The inverse power law distribution of eigenvector centralities, on the other hand,
is expected based on the fact that betweenness and eigenvector centralities also
often have substantially high correlation [20]. The finding that degree, betweenness,
and eigenvector centralities all follow the inverse power law distribution is also
in agreement with empirical results, where similar behavior is observed [13].
The results of the simulations for D, E, and B support an interpretation that the
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Table 1 The powers Ax for centralities X € D, E, B obtained from simulations for A =
1.3,15,1.7,and 1.9

r D rE B Cc Cr

A x1073 +0.01 +0.01 +0.03 +0.05 +0.05 A

1.3 2 1.56 1.28 1.25 0.18 0.62 —0.58

N = 300 5 1.43 1.03 1.26 0.16 0.60 —0.55
8 1.30 0.86 1.26 0.16 0.56 —0.50
AV 14 1.1 1.3 0.17

1.5 2 1.62 1.52 1.46 0.27 0.41 —0.47

N =700 5 1.56 1.33 142 0.25 0.31 —0.36
8 1.49 1.33 1.41 0.24 0.24 —0.27
AV 1.6 1.4 1.4 0.25

1.7 0.5 1.94 2.08 1.64 0.33 0.31 —0.39

N =900 2 1.82 1.73 1.60 0.30 0.21 —0.32
5 1.75 1.73 1.54 0.28 0.12 —0.19
AV 1.8 1.8 1.6 0.30

1.9 0.5 2.00 2.26 1.78 0.37 0.13 —0.25

N = 1200 2 1.97 2.00 1.71 0.33 0.07 —0.16
5 1.93 2.01 1.70 0.32 0.04 —0.09
AV 2.0 2.1 1.7 0.34

The average values C¢ and C, of closeness centrality and local clustering coefficient, respectively,
and the assortativity A are also reported. The average values over all r are denoted by AV and given
with two significant digits

properties of the associative networks can be understood as a consequence of
the simple affinity based linking, taking place under conditions of very minimal
information of the absolute affinities; what is needed is only the ranking of affinities
and a constraint determining the average (or any other single characteristic value)
characterizing the rankings.

The closeness centralities obtained in the simulations also show the variation
under the changes in A and r, similarly also the average value of local clustering.
In addition, assortativity also changes substantially when the parameter A is
changed from 1.3 to 1.9. This is contrary to findings in empirical cases, where
all these values appear to be rather constant [13]. The statistical uncertainties
of the empirical sample are considerable and thus also this conclusion is ten-
tative. We believe that the closeness centrality, clustering, and assortativity are
sensitive to the modular structure of the networks. The empirical thematically
associative networks are modular, although the modularity is not striking, there
are clear signs of it. The community search based on modularity optimization by
IGCommunitiesOptimalModularity finds about from 15 to 20 communi-
ties. Here, however, we will not pursue this question further since we are focusing
here only on the question if simple model based on affinity is enough to explain
the emergence of power law distribution for D, E, and B in case of associative
networks.
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Fig. 2 Distributions of degree (D) , eigenvector (E), betweenness (B), and Katz (K) centralities
for modular networks. All values of E, B, and K are scaled to range from O to 1. Results are
shown for parameter 2 = 1.5 with r = 5 x 1073, and for modularity with @« = 1, N = 1000 and
M = 4000 (Mod A) and « = 3, N = 1200 and M = 5000 (Mod B). The results for modular
networks (bullets) and rewired counterparts (stars) are shown in same plots (but for most parts,
are not distinguishable). The average of the best fits to inverse power law -type part of curves for
modular networks is as reported in Table 2. All results are based on 1000 repetitions

The effect of modularity on the distributions of centralities is not large, but is
nevertheless detectable. The effect of modularity was studied in detail for A = 1.5
and for different modularities with the parameters « = 1 with N = 1000 and
M = 4000 (Modularity A); and « = 3 with N = 1200 and M = 5000 (Modularity
B), where ¢ = 1 corresponds case where the largest module contain the same
number of links as the smallest modules, while for « = 3 the largest module has
equally many links as all small modules. The effect of modularity disappears with
rewiring and thus rewired networks provide the benchmark results to quantify the
effect of modularity. Figure 2 shows the degree (D), betweenness (B), eigenvector
(E), and Katz (K) -centralities for network with A = 1.5 and « = 1 and 3. The
corresponding values of powers Ax, X € {D, B, E, K} are provided in Table 2.
As is seen, the effects of modularity, when results for modular networks (mod)
are compared with their rewired counterparts (rwd), are rather small, except for
Katz-centrality. Increasing modularity (i.e., decreasing the value of « from 3 to 1)
increases the values of powers Ap and Ag but decreases Ap. This signals that with
increasing modularity local connectivity increases, but nodes with high values of
betweenness centrality remain and their role in connecting the modules becomes
more important in comparison to other nodes. The effect is weak, but this tendency
can be made more visible by introducing divergence A[B, E] = (8[B] — §[E])),
where §[X] = Ay — )@}Vd/ (Ax + )\B}Vd) quantifies the difference of power X in
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Table 2 The powers ALy for centralities X € {D, E, B, K} obtained from simulations for > = 1.5
andr =5 x 1073

N/My « AD rE AB Ak A Cc Cr A
+0.01 +0.01 +0.03 =+0.05 +0.05
ModA 1,mod 1.79 2.09 1.33 2.82 033 032 045 —0.35
lLrwd 179 1.81 1.60 2.22 0.18 0.17 —0.25
1000/ 2, mod 1.58 1.62 1.34 2.37 0.12 0.4 025 —0.27
4000 2,rwd  1.58 1.56 1.46 2.20 0.13 0.13 —0.20
3,mod 1.1 1.49 1.42 2.27 0.05 0.14 0.15 —0.20
3,rwd  1.51 1.45 1.45 2.20 0.12 0.10 —0.16
l,mod 1.86 2.04 1.39 2.81 024 038 046  —0.40
l,rwd 185 1.93 1.68 221 0.12 0.12 -0.18
1200/ 2mod  1.60 1.66 1.40 1.95 0.16 031 027 —0.28
5000 2,rwd  1.60 1.55 1.52 2.26 0.15 0.14 —0.22
3mod 1.53 1.49 1.44 1.90 0.04 0.16 0.17  —-0.20
ModB  3,rwd  1.51 1.44 1.45 2.03 0.12 0.10 —0.17

The modularity is imposed by using « = 1,2, and 3. The most sensitive measure for effect of
modularity is the divergence A = A[B, E]. Results are given for modular network (mod) and
rewired network (rwd). The average values Cc and C; of closeness centrality and local clustering
coefficient, respectively, and the assortativity A are also reported. Results for Mod A and Mod B
are shown in Fig. 2

non-rewired network to corresponding power A™9 obtained for rewired network.
With rewiring, when modularity decreases (i.e., o increases), A[E, B] approaches
very low values indicating that effects of modularity diminish. This tendency is also
manifest in behavior of Katz-centrality. Although the distribution of values of K
cannot be reliably fitted with an inverse power law, such a fit reveals a clear tendency
which shows that relative frequencies of high K-values decrease with increasing
modularity. This supports the interpretation that with increasing modularity the role
of long-paths diminishes in comparison to local connectivities and shorter paths.

Simulations performed for other choices of parameters A, N and M, and « pro-
vide essentially similar trends as shown by distributions in Fig. 2 and corresponding
powers of power law fits summarized in Table 2. The results suggest that the effects
of modularity remain very weak for affinity distribution as given by Eq. (3) and
parameters corresponding inverse power law distributions.

6 Discussion and Conclusions

We have explored the possibility that students’ thematically associative knowledge
can be understood as affinity-based process of making associative connections. The
motivation for the study stems from the notion that when students’ associative
knowledge of science history is arranged in the form of a network, consisting of
linked pairwise thematically associative connections, a network with inverse power
law distribution of degree and betweenness centralities emerges [13].
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The basic hypothesis of the study is that the inverse power laws are signatures
that thematical associations are based on simple statistics, which is robust enough
to nearly invariably lead to inverse power law type dependence. Starting from this
hypothesis, we derived the linking probability by assuming that it on the relative
rankings of affinities instead of requiring detailed knowledge of the distribution
of affinities. In this case, the linking probabilities are obtained as an outcome
of maximization of information theoretic entropy, i.e. as outcomes of maximal
uncertainty.

The linking probability distribution thus derived was used to simulate the
networks. For simulations, IGraph and its routine IGStaticFitnessGame
were adopted. The degree, eigenvector, and betweenness centralities of simulated
networks matched closely enough the empirical properties of students’ associative
networks to support the hypothesis put forward in deriving the distribution. The
hypothesis that for major part the properties of the real thematically associated
networks may depend only on the affinity rankings and not on the observable mod-
ularity of such networks was tested by imposing stratified modularity on the model
networks. It was observed that although the modularity affects the centrality distri-
butions, the effect is generally very weak. Therefore, the results support the view
that students’ associative knowledge (of science history) may be indeed governed
by their overall conceptions of the affinity or importance of the knowledge elements
(characters, ideas, inventions and events, etc.) forming their knowledge base.

The structure of thematically associative networks is clearly different from
the structure of concept networks based on detailed knowledge substantiation
[12, 13]. In the case of substantiated knowledge networks, the degree centrality
distribution is peaked, resembling a gamma-distribution[12] rather than an inverse
power laws as in case of associative knowledge [13]. This notion supports the
claim that students’ thematically associative and relationally structured knowledge
is differently organized, and may actually represent different forms of knowledge
[7, 8, 14]. The results of the present study and the study related to organization
of substantiated knowledge [12] are, of course, still far from justifying such a
conclusion but provide nevertheless promising network based methods to test such
arguments.
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