49 research outputs found

    Using infrared/X-ray flare statistics to probe the emission regions near the event horizon of Sgr A*

    Get PDF
    The supermassive black hole at the centre of the Galaxy flares at least daily in the infrared (IR) and X-ray bands, yet the process driving these flares is still unknown. So far detailed analysis has only been performed on a few bright flares. In particular, the broadband spectral modelling suffers from a strong lack of simultaneous data. However, new monitoring campaigns now provide data on thousands of flaring events, allowing a statistical analysis of the flare properties. In this paper, we investigate the X-ray and IR flux distributions of the flare events. Using a self-consistent calculation of the particle distribution, we model the statistical properties of the flares. Based on a previous work on single flares, we consider two families of models: pure synchrotron models and synchrotron self-Compton (SSC) models. We investigate the effect of fluctuations in some relevant parameters (e.g. acceleration properties, density, magnetic field) on the flux distributions. The distribution of these parameters is readily derived from the flux distributions observed at different wavelengths. In both scenarios, we find that fluctuations of the power injected in accelerated particles plays a major role. This must be distributed as a power-law (with different indices in each model). In the synchrotron dominated scenario, we derive the most extreme values of the acceleration power required to reproduce the brightest flares. In that model, the distribution of the acceleration slope fluctuations is constrained and in the SSC scenario we constrain the distributions of the correlated magnetic field and flow density variations.Comment: 9 pages, 3 tables, 6 figures, MNRAS, June 201

    A Persistent Disk Wind in GRS 1915+105 with NICER

    Full text link
    The bright, erratic black hole X-ray binary GRS 1915+105 has long been a target for studies of disk instabilities, radio/infrared jets, and accretion disk winds, with implications that often apply to sources that do not exhibit its exotic X-ray variability. With the launch of NICER, we have a new opportunity to study the disk wind in GRS 1915+105 and its variability on short and long timescales. Here we present our analysis of 39 NICER observations of GRS 1915+105 collected during five months of the mission data validation and verification phase, focusing on Fe XXV and Fe XXVI absorption. We report the detection of strong Fe XXVI in 32 (>80%) of these observations, with another four marginal detections; Fe XXV is less common, but both likely arise in the well-known disk wind. We explore how the properties of this wind depends on broad characteristics of the X-ray lightcurve: mean count rate, hardness ratio, and fractional RMS variability. The trends with count rate and RMS are consistent with an average wind column density that is fairly steady between observations but varies rapidly with the source on timescales of seconds. The line dependence on spectral hardness echoes known behavior of disk winds in outbursts of Galactic black holes; these results clearly indicate that NICER is a powerful tool for studying black hole winds.Comment: Accepted for publication in ApJL. Comments welcom

    Monitoring observations of SMC X-1's excursions (MOOSE)-II: A new excursion accompanies spin-up acceleration

    Full text link
    SMC X-1 is a high-mass X-ray binary showing superorbital modulation with an unstable period. Previous monitoring shows three excursion events in 1996--1998, 2005--2007, and 2014--2016. The superorbital period drifts from >60 days to <40 days and then evolves back during an excursion. Here we report a new excursion event of SMC X-1 in 2020--2021, indicating that the superorbital modulation has an unpredictable, chaotic nature. We trace the spin-period evolution and find that the spin-up rate accelerated one year before the onset of this new excursion, which suggests a possible inside-out process connecting the spin-up acceleration and the superorbital excursion. This results in a deviation of the spin period residual, similar to the behaviour of the first excursion in 1996--1998. In further analysis of the pulse profile evolution, we find that the pulsed fraction shows a long-term evolution and may be connected to the superorbital excursion. These discoveries deepen the mystery of SMC X-1 because they cannot be solely interpreted by the warped disc model. Upcoming pointed observations and theoretical studies may improve our understanding of the detailed accretion mechanisms taking place.Comment: 7 pages, 3 figures, Accepted for publication in MNRA

    A shared accretion instability for black holes and neutron stars

    Get PDF
    Accretion disks around compact objects are expected to enter an unstable phase at high luminosity1. One instability may occur when the radiation pressure generated by accretion modifies the disk viscosity, resulting in the cyclic depletion and refilling of the inner disk on short timescales2. Such a scenario, however, has only been quantitatively verified for a single stellar-mass black hole3,4,5. Although there are hints of these cycles in a few isolated cases6,7,8,9,10, their apparent absence in the variable emission of most bright accreting neutron stars and black holes has been a continuing puzzle11. Here we report the presence of the same multiwavelength instability around an accreting neutron star. Moreover, we show that the variability across the electromagnetic spectrum—from radio to X-ray—of both black holes and neutron stars at high accretion rates can be explained consistently if the accretion disks are unstable, producing relativistic ejections during transitions that deplete or refill the inner disk. Such a new association allows us to identify the main physical components responsible for the fast multiwavelength variability of highly accreting compact objects.The authors thank the referees for the constructive comments which improved the manuscript. The interpretation of the FV thank R. Arcodia, P. Casella, G. Marcel, G. Mastroserio, N. Scepi and L. Stella for insightful discussions. The interpretation of the results benefited from discussions held during the meeting ‘Looking at the disc-jet coupling from different angles’ held at the International Space Science Institute in Bern, Switzerland. FV was supported by the NASA awards 80NSSC19K1456, 80NSSC21K0526 and from grant FJC2020-043334-I financed by MCIN/AEI/10.13039/501100011033 and NextGenerationEU/PRTR. JN acknowledges support by the SAO award GO1-22036X. AJT acknowledges support for this work was provided by NASA through the NASA Hubble Fellowship grant #HST–HF2–51494.001 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5–26555. D.A. and N.C.S. acknowledges support from the Science and Technology Facilities Council (STFC) grant ST/V001000/1. FV, MAP and VC acknowledge support from the Spanish Ministry of Science and Innovation research project PID2020-120323GB-I00. MAP acknowledges support from the Consejería de Economía, Conocimiento y Empleo del Gobierno de Canarias and the European Regional Development Fund (ERDF) under grant with reference ProID2021010132 ACCISI/FEDER, UE. TMB acknowledges financial contribution from the agreement ASI-INAF n.2017- 14-H.0 and from PRIN-INAF 2019 N.15. TMD acknowledges support from the Spanish Ministry of Science and Innovation project PID2021-124879NB-I00, and the Europa Excelencia grant (EUR2021-122010). TDR acknowledge financial contribution from the agreement ASIINAF n.2017-14-H.0.Peer ReviewedPostprint (author's final draft

    Selective dynamical imaging of interferometric data

    Get PDF
    Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT’s (u, v)-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data sethttp://iopscience.iop.org/2041-8205Physic

    The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole

    Get PDF
    Abstract: Synchrotron radiation from hot gas near a black hole results in a polarized image. The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitational lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple model of an axisymmetric, equatorial accretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov and conservation of the Walker–Penrose constant, we provide analytic estimates for the image polarization. We test this model using currently favored general relativistic magnetohydrodynamic simulations of M87*, using ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr A* with GRAVITY. With suitably chosen parameters, our simple model can reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of M87*. Under the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images

    Selective Dynamical Imaging of Interferometric Data

    Get PDF
    Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT's (u, v)-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set

    First M87 Event Horizon Telescope Results. VII. Polarization of the Ring

    Get PDF
    Abstract: In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of ∼15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication
    corecore