96 research outputs found
Recommended from our members
Complete Genome Sequence of the Citrobacter freundii Type Strain.
Citrobacter freundii is a species of facultative anaerobic Gram-negative bacteria of the family Enterobacteriaceae The complete genome is composed of a single chromosomal circle of 4,957,773âbp with a G+C content of 52%
Thoracoscopic Left Atrial Appendage Ligation Complicated by Persistent Left Superior Vena Cava
We herein report a 64 year-old male who had an incidental finding of a persistent left superior vena cava (SVC) revealed by intraoperative transesophageal echocardiography (TEE) during a Maze procedure with left atrial appendage ligation. During the intraoperative TEE, an incidental dilated coronary sinus \u3e 1.1 cm was noted which prompted further evaluation and aided in our ultimate diagnosis. Consequently, significant additional surgical dissection and manipulation were required to isolate the left upper pulmonary vein. This case report reviews the anatomy and embryology of a persistent left SVC, discusses its clinical implications, and identifies surgical considerations for treatment
The Galex Ultraviolet Variability (GUVV) Catalog
We present Version 1.0 of the NASA Galaxy Evolution Explorer (GALEX)
ultraviolet variability catalog (GUVV) that contains information on 84
time-variable and transient sources gained with simultaneous near and far
ultraviolet photometric observations. These time-variable sources were
serendipitously revealed in the various 1.2 degree star fields currently being
surveyed by the GALEX satellite in two ultraviolet bands (NUV 1750-2750A, FUV
1350-1750A) with limiting AB magnitudes of 23-25. The largest-amplitude
variable objects presently detected by GALEX are M-dwarf flare stars, which can
brighten by 5-10 mag in both the NUV and FUV bands during short duration (<
500s) outbursts. Other types of large-amplitude ultraviolet variable objects
include ab-type RR Lyrae stars, which can vary periodically by 2-5mag in the
GALEX FUV band. This first GUVV catalog lists galactic positions and possible
source identifications in order to provide the astronomical community with a
list of time-variable objects that can now be repeatedly observed at other
wavelengths. We expect the total number of time-variable source detections to
increase as the GALEX mission progresses, such that later version numbers of
the GUVV catalog will contain substantially more variable sources
A Conceptual Model of Natural and Anthropogenic Drivers and Their Influence on the Prince William Sound, Alaska, Ecosystem
Prince William Sound (PWS) is a semi-enclosed fjord estuary on the coast of Alaska adjoining the northern Gulf of Alaska (GOA). PWS is highly productive and diverse, with primary productivity strongly coupled to nutrient dynamics driven by variability in the climate and oceanography of the GOA and North Pacific Ocean. The pelagic and nearshore primary productivity supports a complex and diverse trophic structure, including large populations of forage and large fish that support many species of marine birds and mammals. High intra-annual, inter-annual, and interdecadal variability in climatic and oceanographic processes as drives high variability in the biological populations. A risk-based conceptual ecosystem model (CEM) is presented describing the natural processes, anthropogenic drivers, and resultant stressors that affect PWS, including stressors caused by the Great Alaska Earthquake of 1964 and the Exxon Valdez oil spill of 1989. A trophodynamic model incorporating PWS valued ecosystem components is integrated into the CEM. By representing the relative strengths of driver/stressors/effects, the CEM graphically demonstrates the fundamental dynamics of the PWS ecosystem, the natural forces that control the ecological condition of the Sound, and the relative contribution of natural processes and human activities to the health of the ecosystem. The CEM illustrates the dominance of natural processes in shaping the structure and functioning of the GOA and PWS ecosystems
Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial
Background Non-alcoholic steatohepatitis (NASH) is a common type of chronic liver disease that can lead to cirrhosis. Obeticholic acid, a farnesoid X receptor agonist, has been shown to improve the histological features of NASH. Here we report results from a planned interim analysis of an ongoing, phase 3 study of obeticholic acid for NASH. Methods In this multicentre, randomised, double-blind, placebo-controlled study, adult patients with definite NASH,non-alcoholic fatty liver disease (NAFLD) activity score of at least 4, and fibrosis stages F2âF3, or F1 with at least oneaccompanying comorbidity, were randomly assigned using an interactive web response system in a 1:1:1 ratio to receive oral placebo, obeticholic acid 10 mg, or obeticholic acid 25 mg daily. Patients were excluded if cirrhosis, other chronic liver disease, elevated alcohol consumption, or confounding conditions were present. The primary endpointsfor the month-18 interim analysis were fibrosis improvement (â„1 stage) with no worsening of NASH, or NASH resolution with no worsening of fibrosis, with the study considered successful if either primary endpoint was met. Primary analyses were done by intention to treat, in patients with fibrosis stage F2âF3 who received at least one dose of treatment and reached, or would have reached, the month 18 visit by the prespecified interim analysis cutoff date. The study also evaluated other histological and biochemical markers of NASH and fibrosis, and safety. This study is ongoing, and registered with ClinicalTrials.gov, NCT02548351, and EudraCT, 20150-025601-6. Findings Between Dec 9, 2015, and Oct 26, 2018, 1968 patients with stage F1âF3 fibrosis were enrolled and received at least one dose of study treatment; 931 patients with stage F2âF3 fibrosis were included in the primary analysis (311 in the placebo group, 312 in the obeticholic acid 10 mg group, and 308 in the obeticholic acid 25 mg group). The fibrosis improvement endpoint was achieved by 37 (12%) patients in the placebo group, 55 (18%) in the obeticholic acid 10 mg group (p=0·045), and 71 (23%) in the obeticholic acid 25 mg group (p=0·0002). The NASH resolution endpoint was not met (25 [8%] patients in the placebo group, 35 [11%] in the obeticholic acid 10 mg group [p=0·18], and 36 [12%] in the obeticholic acid 25 mg group [p=0·13]). In the safety population (1968 patients with fibrosis stages F1âF3), the most common adverse event was pruritus (123 [19%] in the placebo group, 183 [28%] in the obeticholic acid 10 mg group, and 336 [51%] in the obeticholic acid 25 mg group); incidence was generally mild to moderate in severity. The overall safety profile was similar to that in previous studies, and incidence of serious adverse events was similar across treatment groups (75 [11%] patients in the placebo group, 72 [11%] in the obeticholic acid 10 mg group, and 93 [14%] in the obeticholic acid 25 mg group). Interpretation Obeticholic acid 25 mg significantly improved fibrosis and key components of NASH disease activity among patients with NASH. The results from this planned interim analysis show clinically significant histological improvement that is reasonably likely to predict clinical benefit. This study is ongoing to assess clinical outcomes
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Recommended from our members
Onset of deglacial warming in West Antarctica driven by local orbital forcing
The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate[superscript 1,2]. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago[superscript 3,4]. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently[superscript 2,5]. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere[superscript 6] associated with an abrupt decrease in Atlantic meridional overturning circulation[superscript 7]. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.Keywords: Last glacial period, Carbon Dioxide, High resolution, Chronology, Ice core, Circulation, Abrupt climate change, Atmospheric Co2, Greenland, Polar ic
- âŠ