10,615 research outputs found

    Gyroscopic Precession and Inertial Forces in Axially Symmetric Stationary Spacetimes

    Get PDF
    We study the phenomenon of gyroscopic precession and the analogues of inertial forces within the framework of general relativity. Covariant connections between the two are established for circular orbits in stationary spacetimes with axial symmetry. Specializing to static spacetimes, we prove that gyroscopic precession and centrifugal force both reverse at the photon orbits. Simultaneous non-reversal of these in the case of stationary spacetimes is discussed. Further insight is gained in the case of static spacetime by considering the phenomena in a spacetime conformal to the original one. Gravi-electric and gravi-magnetic fields are studied and their relation to inertial forces is established.Comment: 21 pages, latex, no figures, http://202.41.67.76/~nayak/gpifass.te

    Novel epoxy powder for manufacturing thick-section composite parts under vacuum-bag-only conditions. Part II: Experimental validation and process investigations

    Get PDF
    Validations of a one-dimensional process model are carried out by manufacturing thick-section glass-fibre reinforced composite laminates with a low-exotherm epoxy powder. An experimental apparatus is developed which heats the laminates from one side while insulating the remaining sides (i.e. approximating one-dimensional heat transfer conditions). The experimental results are analysed and used to validate process models for the epoxy powder system. Process simulations are performed to analyse the influence of material format, laminate thickness change, and heating methods (i.e. one-sided heating vs two-sided heating, and heated tooling vs oven heating). It is shown that epoxy powder eliminates the risk of ‘thermal runaway’, but thermal and cure gradients persist for a conventional processing cycle. Methods to inhibit the evolution of these gradients are explored using process simulations. These methods include modifying the temperature cycle and using multiple epoxy powders with varied latent curing properties

    Chemically reacting and radiating nanofluid flow past an exponentially stretching sheet in a porous medium

    Get PDF
    The influence of non-uniform permeability, thermal radiation and variable chemical reaction on three-dimensional flow of an incompressible nanofluid over an exponentially-stretching sheet in association with a convective boundary condition has been investgated. In the present study, a new micro-convection model known as Patel model has been employed to enhance the thermal conductivity and hence the heat transfer capability of nanofluids. In the present analysis, base fluids such as water, 30% ethylene glycol, 50% ethylene glycol and nanoparticles such as Cu, Ag and Fe3O4 have been considered. With the help of some suitable transformations the governing partial differential equationsare converted into a set of ordinary differential equations which have beeen then solved numerically by using fourth-order Runge-Kutta method along with shooting technique. The influence of various embedded physical parameters have been explored through graphs for velocity, temperature, concentration, skin friction, local Nusselt and Sherwood numbers. The resistive force offered by the porous matrix belittles the momentum boundary layer and helps in growing the temperature and concentration boundary layers. Fluid temperature is an increasing function of radiation parameter Rd and Biot’s number Bi whereas concentration field is a decreasing function of Schmidt number Sc and chemical reaction parameter γ

    Exotic resonant level models in non-Abelian quantum Hall states coupled to quantum dots

    Get PDF
    In this paper we study the coupling between a quantum dot and the edge of a non-Abelian fractional quantum Hall state. We assume the dot is small enough that its level spacing is large compared to both the temperature and the coupling to the spatially proximate bulk non-Abelian fractional quantum Hall state. We focus on the physics of level degeneracy with electron number on the dot. The physics of such a resonant level is governed by a kk-channel Kondo model when the quantum Hall state is a Read-Rezayi state at filling fraction ν=2+k/(k+2)\nu=2+k/(k+2) or its particle-hole conjugate at ν=2+2/(k+2)\nu=2+2/(k+2). The kk-channel Kondo model is channel symmetric even without fine tuning any couplings in the former state; in the latter, it is generically channel asymmetric. The two limits exhibit non-Fermi liquid and Fermi liquid properties, respectively, and therefore may be distinguished. By exploiting the mapping between the resonant level model and the multichannel Kondo model, we discuss the thermodynamic and transport properties of the system. In the special case of k=2k=2, our results provide a novel venue to distinguish between the Pfaffian and anti-Pfaffian states at filling fraction ν=5/2\nu=5/2. We present numerical estimates for realizing this scenario in experiment.Comment: 18 pages, 2 figures. Clarified final discussio

    Multiplicity Fluctuations in the Pion-Fireball Gas

    Full text link
    The pion number fluctuations are considered in the system of pions and large mass fireballs decaying finally into pions. A formulation which gives an extension of the model of independent sources is suggested. The grand canonical and micro-canonical ensemble formulations of the pion-fireball gas are considered as particular examples.Comment: 13 pages, 4 figure

    Open Luttinger liquids

    Full text link
    We study the problem of Luttinger liquids interacting with an active environment. We are particularly interested in how dissipation affects the response and correlation functions of non-isolated Luttinger liquids. We show that the exchange of particles, energy, and momentum lead to changes in the exponents characterizing the various correlations functions. We discuss the importance of the zero mode physics in this context.Comment: Revtex, 4 pages. Final version published in PR

    Large Noncollinearity and Spin Reorientation in the Novel Mn2RhSn Heusler Magnet

    Full text link
    Noncollinear magnets provide essential ingredients for the next generation memory technology. It is a new prospect for the Heusler materials, already well known due to the diverse range of other fundamental characteristics. Here, we present a combined experimental and theoretical study of novel noncollinear tetragonal Mn2RhSn Heusler material exhibiting unusually strong canting of its magnetic sublattices. It undergoes a spin-reorientation transition, induced by a temperature change and suppressed by an external magnetic field. Because of the presence of Dzyaloshinskii-Moriya exchange and magnetic anisotropy, Mn2RhSn is suggested to be a promising candidate for realizing the Skyrmion state in the Heusler family

    Tailoring discrete quantum walk dynamics via extended initial conditions: Towards homogeneous probability distributions

    Full text link
    We study the evolution of initially extended distributions in the coined quantum walk on the line by analyzing the dispersion relation of the process and its associated wave equations. This allows us, in particular, to devise an initially extended condition leading to a uniform probability distribution whose width increases linearly with time, with increasing homogeneity.Comment: 4 pages, 2 figure

    Retrieval of sea surface velocities using sequential Ocean Colour Monitor (OCM) data

    Get PDF
    The Indian remote sensing satellite, IRS-P4 (Oceansat-I) launched on May 26th, 1999 carried two sensors on board, i.e., the Ocean Colour Monitor (OCM) and the Multi-frequency Scanning Microwave Radiometer (MSMR) dedicated for oceanographic research. Sequential data of IRS-P4 OCM has been analysed over parts of both east and west coast of India and a methodology to retrieve sea surface current velocities has been applied. The method is based on matching suspended sediment dispersion patterns, in sequential two time lapsed images. The pattern matching is performed on a pair of atmospherically corrected and geo-referenced sequential images by Maximum Cross-Correlation (MCC) technique. The MCC technique involves computing matrices of cross-correlation coefficients and identifying correlation peaks. The movement of the pattern can be calculated knowing the displacement of windows required to match patterns in successive images. The technique provides actual flow during a specified period by integrating both tidal and wind influences. The current velocities retrieved were compared with synchronous data collected along the east coast during the GSI cruise ST-133 of R.V. Samudra Kaustubh in January 2000. The current data were measured using the ocean current meter supplied by the Environmental Measurement and CONtrol (EMCON), Kochi available with the Geological Survey of India, Marine Wing. This current meter can measure direction and magnitude with an accuracy of ±5‡ and 2% respectively. The measurement accuracies with coefficient of determination (R2 ) of 0.99, for both magnitude (cm.s-1) and direction (deg.) were achieved

    STIRAP transport of Bose-Einstein condensate in triple-well trap

    Full text link
    The irreversible transport of multi-component Bose-Einstein condensate (BEC) is investigated within the Stimulated Adiabatic Raman Passage (STIRAP) scheme. A general formalism for a single BEC in M-well trap is derived and analogy between multi-photon and tunneling processes is demonstrated. STIRAP transport of BEC in a cyclic triple-well trap is explored for various values of detuning and interaction between BEC atoms. It is shown that STIRAP provides a complete population transfer at zero detuning and interaction and persists at their modest values. The detuning is found not to be obligatory. The possibility of non-adiabatic transport with intuitive order of couplings is demonstrated. Evolution of the condensate phases and generation of dynamical and geometric phases are inspected. It is shown that STIRAP allows to generate the unconventional geometrical phase which is now of a keen interest in quantum computing.Comment: 9 pages, 6 figures. To be published in Laser Physics (v. 19, n.4, 2009
    • …
    corecore