113 research outputs found

    Species Association of Hepatitis B Virus (HBV) in Non-Human Apes; Evidence for Recombination between Gorilla and Chimpanzee Variants

    Get PDF
    Hepatitis B virus (HBV) infections are widely distributed in humans, infecting approximately one third of the world's population. HBV variants have also been detected and genetically characterised from Old World apes; Gorilla gorilla (gorilla), Pan troglodytes (chimpanzee), Pongo pygmaeus (orang-utan), Nomascus nastusus and Hylobates pileatus (gibbons) and from the New World monkey, Lagothrix lagotricha (woolly monkey). To investigate species-specificity and potential for cross species transmission of HBV between sympatric species of apes (such as gorillas and chimpanzees in Central Africa) or between humans and chimpanzees or gorillas, variants of HBV infecting captive wild-born non-human primates were genetically characterised. 9 of 62 chimpanzees (11.3%) and two from 11 gorillas (18%) were HBV-infected (15% combined frequency), while other Old world monkey species were negative. Complete genome sequences were obtained from six of the infected chimpanzee and both gorillas; those from P. t .ellioti grouped with previously characterised variants from this subspecies. However, variants recovered from P. t. troglodytes HBV variants also grouped within this clade, indicative of transmission between sub-species, forming a paraphyletic clade. The two gorilla viruses were phylogenetically distinct from chimpanzee and human variants although one showed evidence for a recombination event with a P.t.e.-derived HBV variant in the partial X and core gene region. Both of these observations provide evidence for circulation of HBV between different species and sub-species of non-human primates, a conclusion that differs from the hypothesis if of strict host specificity of HBV genotypes

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Minimization of Biosynthetic Costs in Adaptive Gene Expression Responses of Yeast to Environmental Changes

    Get PDF
    Yeast successfully adapts to an environmental stress by altering physiology and fine-tuning metabolism. This fine-tuning is achieved through regulation of both gene expression and protein activity, and it is shaped by various physiological requirements. Such requirements impose a sustained evolutionary pressure that ultimately selects a specific gene expression profile, generating a suitable adaptive response to each environmental change. Although some of the requirements are stress specific, it is likely that others are common to various situations. We hypothesize that an evolutionary pressure for minimizing biosynthetic costs might have left signatures in the physicochemical properties of proteins whose gene expression is fine-tuned during adaptive responses. To test this hypothesis we analyze existing yeast transcriptomic data for such responses and investigate how several properties of proteins correlate to changes in gene expression. Our results reveal signatures that are consistent with a selective pressure for economy in protein synthesis during adaptive response of yeast to various types of stress. These signatures differentiate two groups of adaptive responses with respect to how cells manage expenditure in protein biosynthesis. In one group, significant trends towards downregulation of large proteins and upregulation of small ones are observed. In the other group we find no such trends. These results are consistent with resource limitation being important in the evolution of the first group of stress responses

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Monitoring mosquitoes in urban Dar es Salaam: Evaluation of resting boxes, window exit traps, CDC light traps, Ifakara tent traps and human landing catches

    Get PDF
    Ifakara tent traps (ITT) are currently the only sufficiently sensitive, safe, affordable and practical method for routine monitoring host-seeking mosquito densities in Dar es Salaam. However, it is not clear whether ITT catches represent indoors or outdoors biting densities. ITT do not yield samples of resting, fed mosquitoes for blood meal analysis. Outdoors mosquito sampling methods, namely human landing catch (HLC), ITT (Design B) and resting boxes (RB) were conducted in parallel with indoors sampling using HLC, Centers for Disease Control and Prevention miniature light traps (LT) and RB as well as window exit traps (WET) in urban Dar es Salaam, rotating them thirteen times through a 3 × 3 Latin Square experimental design replicated in four blocks of three houses. This study was conducted between 6th May and 2rd July 2008, during the main rainy season when mosquito biting densities reach their annual peak. The mean sensitivities of indoor RB, outdoor RB, WET, LT, ITT (Design B) and HLC placed outdoor relative to HLC placed indoor were 0.01, 0.005, 0.036, 0.052, 0.374, and 1.294 for Anopheles gambiae sensu lato (96% An. gambiae s.s and 4% An. arabiensis), respectively, and 0.017, 0.053, 0.125, 0.423, 0.372 and 1.140 for Culex spp, respectively. The ITT (Design B) catches correlated slightly better to indoor HLC (r(2) = 0.619, P < 0.001, r(2) = 0.231, P = 0.001) than outdoor HLC (r(2) = 0.423, P < 0.001, r(2) = 0.228, P = 0.001) for An. gambiae s.l. and Culex spp respectively but the taxonomic composition of mosquitoes caught by ITT does not match those of the indoor HLC (χ(2) = 607.408, degrees of freedom = 18, P < 0.001). The proportion of An. gambiae caught indoors was unaffected by the use of an LLIN in that house. The RB, WET and LT are poor methods for surveillance of malaria vector densities in urban Dar es Salaam compared to ITT and HLC but there is still uncertainty over whether the ITT best reflects indoor or outdoor biting densities. The particular LLIN evaluated here failed to significantly reduce house entry by An. gambiae s.l. suggesting a negligible repellence effect

    Maize Inbreds Exhibit High Levels of Copy Number Variation (CNV) and Presence/Absence Variation (PAV) in Genome Content

    Get PDF
    Following the domestication of maize over the past ∼10,000 years, breeders have exploited the extensive genetic diversity of this species to mold its phenotype to meet human needs. The extent of structural variation, including copy number variation (CNV) and presence/absence variation (PAV), which are thought to contribute to the extraordinary phenotypic diversity and plasticity of this important crop, have not been elucidated. Whole-genome, array-based, comparative genomic hybridization (CGH) revealed a level of structural diversity between the inbred lines B73 and Mo17 that is unprecedented among higher eukaryotes. A detailed analysis of altered segments of DNA conservatively estimates that there are several hundred CNV sequences among the two genotypes, as well as several thousand PAV sequences that are present in B73 but not Mo17. Haplotype-specific PAVs contain hundreds of single-copy, expressed genes that may contribute to heterosis and to the extraordinary phenotypic diversity of this important crop

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies
    corecore