671 research outputs found

    Application of reverse micelle sol-gel synthesis for bulk doping and heteroatoms Surface Enrichment in Mo-Doped TiO 2 nanoparticles

    Get PDF
    TiO 2 nanoparticles containing 0.0, 1.0, 5.0, and 10.0 wt.% Mo were prepared by a reverse micelle template assisted sol-gel method allowing the dispersion of Mo atoms in the TiO 2 matrix. Their textural and surface properties were characterized by means of X-ray powder diffraction, micro-Raman spectroscopy, N 2 adsorption/desorption isotherms at -196 °C, energy dispersive X-ray analysis coupled to field emission scanning electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance UV-Vis spectroscopy, and ζ-potential measurement. The photocatalytic degradation of Rhodamine B (under visible light and low irradiance) in water was used as a test reaction as well. The ensemble of the obtained experimental results was analyzed in order to discover the actual state of Mo in the final materials, showing the occurrence of both bulk doping and Mo surface species, with progressive segregation of MoO x species occurring only at a higher Mo content

    Sodium Thiosulfate Prevents Chondrocyte Mineralization and Reduces the Severity of Murine Osteoarthritis.

    Get PDF
    Calcium-containing crystals participate in the pathogenesis of OA. Sodium thiosulfate (STS) has been shown to be an effective treatment in calcification disorders such as calciphylaxis and vascular calcification. This study investigated the effects and mechanisms of action of STS in a murine model of OA and in chondrocyte calcification. Hydroxyapatite (HA) crystals-stimulated murine chondrocytes and macrophages were treated with STS. Mineralization and cellular production of IL-6, MCP-1 and reactive oxygen species (ROS) were assayed. STS's effects on genes involved in calcification, inflammation and cartilage matrix degradation were studied by RT-PCR. STS was administered in the menisectomy model of murine OA, and the effect on periarticular calcific deposits and cartilage degeneration was investigated by micro-CT-scan and histology. In vitro, STS prevented in a dose-dependent manner calcium crystal deposition in chondrocytes and inhibited Annexin V gene expression. In addition, there was a reduction in crystal-induced IL-6 and MCP-1 production. STS also had an antioxidant effect, diminished HA-induced ROS generation and abrogated HA-induced catabolic responses in chondrocytes. In vivo, administration of STS reduced the histological severity of OA, by limiting the size of new periarticular calcific deposits and reducing the severity of cartilage damage. STS reduces the severity of periarticular calcification and cartilage damage in an animal model of OA via its effects on chondrocyte mineralization and its attenuation of crystal-induced inflammation as well as catabolic enzymes and ROS generation. Our study suggests that STS may be a disease-modifying drug in crystal-associated OA

    Efek Daun Sirih Merah (Piper Crocatum) Terhadap Kadar Gula Darah Dan Gambaran Morfologi Endokrin Pankreas Tikus Wistar (Rattus Norvegicus)

    Full text link
    : Leaves of 'sirih merah‘ (Piper Crocatum) contain compounds such as flavonoid, alkaloid and tannin, wich are capable of lowering blood sugar levels. This study aimed to investigate the effects of the administration of ‘sirih merah' broth on blood sugar levels and histopathological features of pancreatic endocrine. This was a laboratory experimental study which was conducted for five month using 12 wistar rats as objects. The rats were divided into four groups: Group A (negative control), which received no treatment; group B, which were given the broth of ‘sirih merah' at 2,4 ml; Group C, which were given sugar solution at 2,4 ml; and Group D, which were given the broth (1,2 ml) and sugar solution (1,2 ml). The results revealed that the levels of blood sugar decreased in rats in Groups B and D but increased in Group C. When compared with rats in Group A, the size and the number of Langerhans islets increased in Group C (more than twice). On the contrary, the number of Langerhans islets in Group D was relatively similar with that of Group A. Conclusion: The administration of the broth of ‘sirih merah' leaves is able to lower blood sugar levels and to cause hyperplasia of pancreatic Langerhans islets

    A new insight into MYC action: control of RNA polymerase II methylation and transcription termination

    Get PDF
    MYC oncoprotein deregulation is a common catastrophic event in human cancer and limiting its activity restrains tumor development and maintenance, as clearly shown via Omomyc, an MYC-interfering 90 amino acid mini-protein. MYC is a multifunctional transcription factor that regulates many aspects of transcription by RNA polymerase II (RNAPII), such as transcription activation, pause release, and elongation. MYC directly associates with Protein Arginine Methyltransferase 5 (PRMT5), a protein that methylates a variety of targets, including RNAPII at the arginine residue R1810 (R1810me2s), crucial for proper transcription termination and splicing of transcripts. Therefore, we asked whether MYC controls termination as well, by affecting R1810me2S. We show that MYC overexpression strongly increases R1810me2s, while Omomyc, an MYC shRNA, or a PRMT5 inhibitor and siRNA counteract this phenomenon. Omomyc also impairs Serine 2 phosphorylation in the RNAPII carboxyterminal domain, a modification that sustains transcription elongation. ChIP-seq experiments show that Omomyc replaces MYC and reshapes RNAPII distribution, increasing occupancy at promoter and termination sites. It is unclear how this may affect gene expression. Transcriptomic analysis shows that transcripts pivotal to key signaling pathways are both up- or down-regulated by Omomyc, whereas genes directly controlled by MYC and belonging to a specific signature are strongly down-regulated. Overall, our data point to an MYC/PRMT5/RNAPII axis that controls termination via RNAPII symmetrical dimethylation and contributes to rewiring the expression of genes altered by MYC overexpression in cancer cells. It remains to be clarified which role this may have in tumor development

    Can stigmatizing attitudes be prevented in psychology students?

    Get PDF
    Background: Stigmatizing attitudes have been found among psychology students in many studies, and they are becoming more common with time. Aims: This study examines whether participation in clinical psychology lessons reduces levels of stigmatization in a population of psychology students and whether it leads to any change in stigmatization. Methods: The study is a pre/post evaluation of the effectiveness of clinical psychology lessons (63 hours of lectures) as a tool to fight stigma. The presence of stigmatizing attitudes was detected using the Italian version of the Attribution Questionnaire-27 (AQ-27-I). Stigmatization was described before and after the lessons with structured equation modeling (SEM). Results: Of a total of 387 students contacted, 302 (78.04%) agreed to be involved in the study, but only 266 (68.73%) completed the questionnaires at both t0 and t1. A statistically significant reduction was seen in all six scales and the total score on the AQ-27-I. The models defined by the SEM (pre- and post-intervention) showed excellent model fit indices and described different dynamics of the phenomenon of stigma. Conclusions: A cycle of clinical psychology lessons can be a useful tool for reducing stigmatizing attitudes in a population of students seeking a psychology degree

    Effects of the Brookite Phase on the Properties of Different Nanostructured TiO2 Phases Photocatalytically Active Towards the Degradation of N-Phenylurea

    Get PDF
    Different sol-gel synthesis methods were used to obtain four nanostructured mesoporous TiO2 samples for an efficient photocatalytic degradation of the emerging contaminant N-phenylurea under either simulated solar light (1 Sun) or UV light. Particularly, two TiO2 samples were obtained by means of as many template-assisted syntheses, whereas other two TiO2 samples were obtained by a greener template-free procedure, implying acidic conditions and, then, calcination at either 200 °C or 600 °C. In one case, anatase was obtained, whereas in the other three cases mixed crystalline phases were obtained. The four TiO2 samples were characterized by X-ray powder diffraction (followed by Rietveld analysis); Transmission Electron Microscopy; N2 adsorption/desorption at −196 °C; Diffuse Reflectance UV/Vis spectroscopy and ζ-potential measurements. A commercial TiO2 powder (i. e., Degussa P25) was used for comparison. Differences among the synthesized samples were observed not only in their quantitative phase composition, but also in their nanoparticles morphology (shape and size), specific surface area, pore size distribution and pHIEP (pH at isoelectric point), whereas the samples band-gap did not vary sizably. The samples showed different photocatalytic behavior in terms of N-phenylurea degradation, which are ascribed to their different physico-chemical properties and, especially, to their phase composition, stemming from the different synthesis conditions

    Critical Strain Region Evaluation of Self-Assembled Semiconductor Quantum Dots

    Get PDF
    A novel peak finding method to map the strain from high resolution transmission electron micrographs, known as the Peak Pairs method, has been applied to In(Ga) As/AlGaAs quantum dot (QD) samples, which present stacking faults emerging from the QD edges. Moreover, strain distribution has been simulated by the finite element method applying the elastic theory on a 3D QD model. The agreement existing between determined and simulated strain values reveals that these techniques are consistent enough to qualitatively characterize the strain distribution of nanostructured materials. The correct application of both methods allows the localization of critical strain zones in semiconductor QDs, predicting the nucleation of defects, and being a very useful tool for the design of semiconductor device
    corecore