507 research outputs found

    Increased dissolution rates of tranilast solid dispersions extruded with inorganic excipients

    Get PDF
    The purpose of this study was to evaluate the performance of Neusilin® (NEU) a synthetic magnesium aluminometasilicate as inorganic drug carrier co-processed with the hydrophilic surfactants Labrasol and Labrafil to develop Tranilast (TLT) based solid dispersions using continuous melt extrusion (HME) processing. Twin – screw extrusion was optimized to develop various TLT/excipient/surfactant formulations followed by continuous capsule filling in the absence of any downstream equipment. Physicochemical characterisation showed the existence of TLT in partially crystalline state in the porous network of inorganic NEU for all extruded formulations. Furthermore, the in line NIR studies revealed a possible intermolecular H–bonding formation between the drug and carrier resulting in the increase of dissolution of TLT. The capsules containing TLT extruded solid dispersions showed enhanced dissolution rates and compared with the marketed Rizaben® product

    An Industrial Streamer Corona Plasma System for Gas Cleaning

    Full text link

    Structural Routability of n-Pairs Information Networks

    Full text link
    Information does not generally behave like a conservative fluid flow in communication networks with multiple sources and sinks. However, it is often conceptually and practically useful to be able to associate separate data streams with each source-sink pair, with only routing and no coding performed at the network nodes. This raises the question of whether there is a nontrivial class of network topologies for which achievability is always equivalent to routability, for any combination of source signals and positive channel capacities. This chapter considers possibly cyclic, directed, errorless networks with n source-sink pairs and mutually independent source signals. The concept of downward dominance is introduced and it is shown that, if the network topology is downward dominated, then the achievability of a given combination of source signals and channel capacities implies the existence of a feasible multicommodity flow.Comment: The final publication is available at link.springer.com http://link.springer.com/chapter/10.1007/978-3-319-02150-8_

    An investigation of how fungal infection influences drug penetration through onychomycosis patient's nail plates

    Get PDF
    This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)The treatment of onychomycosis remains problematic even though there are several potent antifungal agents available for patient use. The aim of this investigation was to understand if the structural modifications that arise when a patient's nail become infected plates influences the permeation of drugs into the nail following topical application. It was hoped that through improving understanding of the nail barrier in the diseased state, the development of more effective topical treatments for onychomycosis could be facilitated. The permeation of three compounds with differing hydrophobicities; caffeine, terbinafine and amorolfine, (clogD at pH 7.4 of -0.55, 3.72 and 4.49 respectively), was assessed across both healthy and onychomycosis infected, full thickness, human nail plate sections. Transonychial water loss (TOWL) measurements performed on the healthy and diseased nails supported previous observations that the nail behaves like a porous barrier given the lack of correlation between TOWL values with the thicker, diseased nails. The flux of the more hydrophilic caffeine was two-fold greater across diseased in comparison to the healthy nails, whilst the hydrophobic molecules terbinafine and amorolfine showed no statistically significant change in their nail penetration rates. Caffeine flux across the nail was found to correlate with the TOWL measurements, though no correlation existed for the more hydrophobic drugs. This data supported the notion that the nail pores, opened up by the infection, facilitated the passage of hydrophilic molecules, whilst the keratin binding of hydrophobic molecules meant that their transport through the nail plate was unchanged. Therefore, in order to exploit the structural changes induced by nail fungal infection it would be beneficial to develop a small molecular weight, hydrophilic antifungal agent, which exhibits low levels of keratin binding.Peer reviewe

    Sedimentation record in the Konkan-Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin

    Get PDF
    The Konkan and Kerala Basins constitute a major depocentre for sediment from the onshore hinterland of Western India and as such provide a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This paper presents an analysis of sedimentation in the Konkan-Kerala Basin, coupledwith a mass balance study, and numerical modelling of flexural responses to onshore denudational unloading and o¡shore sediment loading in order to test competing conceptual models for the development of high-elevation passive margins. The Konkan-Kerala Basin contains an estimated 109,000 km<sup>3</sup>; of Cenozoic clastic sediment, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere to sediment loading offshore and denudation onshore that flexure is an important component in the development of the Western Indian Margin.There is evidence for two major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and the Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic

    Landau Analog Levels for Dipoles in the Noncommutative Space and Phase Space

    Full text link
    In the present contribution we investigate the Landau analog energy quantization for neutral particles, that possesses a nonzero permanent magnetic and electric dipole moments, in the presence of an homogeneous electric and magnetic external fields in the context of the noncommutative quantum mechanics. Also, we analyze the Landau--Aharonov--Casher and Landau--He--McKellar--Wilkens quantization due to noncommutative quantum dynamics of magnetic and electric dipoles in the presence of an external electric and magnetic fields and the energy spectrum and the eigenfunctions are obtained. Furthermore, we have analyzed Landau quantization analogs in the noncommutative phase space, and we obtain also the energy spectrum and the eigenfunctions in this context.Comment: 20 pages, references adde

    Time-Space Noncommutativity in Gravitational Quantum Well scenario

    Get PDF
    A novel approach to the analysis of the gravitational well problem from a second quantised description has been discussed. The second quantised formalism enables us to study the effect of time space noncommutativity in the gravitational well scenario which is hitherto unavailable in the literature. The corresponding first quantized theory reveals a leading order perturbation term of noncommutative origin. Latest experimental findings are used to estimate an upper bound on the time--space noncommutative parameter. Our results are found to be consistent with the order of magnitude estimations of other NC parameters reported earlier.Comment: 7 pages, revTe

    Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi

    Get PDF
    Malaria cases due to the zoonotic parasite P. knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and 5 lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genome-wide nucleotide diversity (π = 6.03 x 10-3) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species P. falciparum and P. vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates, and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates (mean genome-wide FST = 0.21, with 9,293 SNPs having fixed differences of FST = 1.0). This showed marked heterogeneity across the genome, mean FST values of different chromosomes ranging from 0.08 to 0.34, with further significant variation across regions within several chromosomes. Analysis of the largest cluster (Cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genome-wide average Tajima’s D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp gene had the top value of Tajima’s D = 1.57), and scans of haplotype homozygosity implicate several genomic regions to be under recent positive selection

    The delivery of personalised, precision medicines via synthetic proteins

    Get PDF
    Introduction: The design of advanced drug delivery systems based on synthetic and su-pramolecular chemistry has been very successful. Liposomal doxorubicin (Caelyx®), and liposomal daunorubicin (DaunoXome®), estradiol topical emulsion (EstrasorbTM) as well as soluble or erodible polymer systems such as pegaspargase (Oncaspar®) or goserelin acetate (Zoladex®) represent considerable achievements. The Problem: As deliverables have evolved from low molecular weight drugs to biologics (currently representing approximately 30% of the market), so too have the demands made of advanced drug delivery technology. In parallel, the field of membrane trafficking (and endocytosis) has also matured. The trafficking of specific receptors i.e. material to be recycled or destroyed, as well as the trafficking of protein toxins has been well characterized. This, in conjunction with an ability to engineer synthetic, recombinant proteins provides several possibilities. The Solution: The first is using recombinant proteins as drugs i.e. denileukin diftitox (Ontak®) or agalsidase beta (Fabrazyme®). The second is the opportunity to use protein toxin architecture to reach targets that are not normally accessible. This may be achieved by grafting regulatory domains from multiple species to form synthetic proteins, engineered to do multiple jobs. Examples include access to the nucleocytosolic compartment. Herein the use of synthetic proteins for drug delivery has been reviewed
    corecore