745 research outputs found

    Upper Bounds for the Critical Car Densities in Traffic Flow Problems

    Full text link
    In most models of traffic flow, the car density pp is the only free parameter in determining the average car velocity ⟨v⟩\langle v \rangle. The critical car density pcp_c, which is defined to be the car density separating the jamming phase (with ⟨v⟩=0\langle v \rangle = 0) and the moving phase (with ⟨v⟩>0\langle v \rangle > 0), is an important physical quantity to investigate. By means of simple statistical argument, we show that pc<1p_c < 1 for the Biham-Middleton-Levine model of traffic flow in two or higher spatial dimensions. In particular, we show that pc≤11/12p_{c} \leq 11/12 in 2 dimension and pc≤1−(D−12D)Dp_{c} \leq 1 - \left( \frac{D-1}{2D} \right)^D in DD (D>2D > 2) dimensions.Comment: REVTEX 3.0, 5 pages with 1 figure appended at the back, Minor revision, to be published in the Sept issue of J.Phys.Soc.Japa

    Two Lane Traffic Simulations using Cellular Automata

    Full text link
    We examine a simple two lane cellular automaton based upon the single lane CA introduced by Nagel and Schreckenberg. We point out important parameters defining the shape of the fundamental diagram. Moreover we investigate the importance of stochastic elements with respect to real life traffic.Comment: to be published in Physica A, 19 pages, 9 out of 13 postscript figures, 24kB in format .tar.gz., 33kB in format .tar.gz.uu, for a full version including all figures see http://studguppy.tsasa.lanl.gov/research_team/papers

    Spontaneous Time Asymmetry due to Horizon

    Full text link
    We show that quantized matter fields in the presence of background metrics with Horizon exhibit spontaneous time asymmetry. All quantized matter fields have to vanish at the horizon. Some phenemenological applications of this in the context of black holes and early universe are considered.Comment: 4 pages, Revte

    Anisotropic effect on two-dimensional cellular automaton traffic flow with periodic and open boundaries

    Full text link
    By the use of computer simulations we investigate, in the cellular automaton of two-dimensional traffic flow, the anisotropic effect of the probabilities of the change of the move directions of cars, from up to right (purp_{ur}) and from right to up (prup_{ru}), on the dynamical jamming transition and velocities under the periodic boundary conditions in one hand and the phase diagram under the open boundary conditions in the other hand. However, in the former case, the first order jamming transition disappears when the cars alter their directions of move (pur≠0p_{ur}\neq 0 and/or pru≠0p_{ru}\neq 0). In the open boundary conditions, it is found that the first order line transition between jamming and moving phases is curved. Hence, by increasing the anisotropy, the moving phase region expand as well as the contraction of the jamming phase one. Moreover, in the isotropic case, and when each car changes its direction of move every time steps (pru=pur=1p_{ru}=p_{ur}=1), the transition from the jamming phase (or moving phase) to the maximal current one is of first order. Furthermore, the density profile decays, in the maximal current phase, with an exponent γ≈1/4\gamma \approx {1/4}.}Comment: 13 pages, 22 figure

    Towards a variational principle for motivated vehicle motion

    Full text link
    We deal with the problem of deriving the microscopic equations governing the individual car motion based on the assumptions about the strategy of driver behavior. We suppose the driver behavior to be a result of a certain compromise between the will to move at a speed that is comfortable for him under the surrounding external conditions, comprising the physical state of the road, the weather conditions, etc., and the necessity to keep a safe headway distance between the cars in front of him. Such a strategy implies that a driver can compare the possible ways of his further motion and so choose the best one. To describe the driver preferences we introduce the priority functional whose extremals specify the driver choice. For simplicity we consider a single-lane road. In this case solving the corresponding equations for the extremals we find the relationship between the current acceleration, velocity and position of the car. As a special case we get a certain generalization of the optimal velocity model similar to the "intelligent driver model" proposed by Treiber and Helbing.Comment: 6 pages, RevTeX

    A Cellular Automaton Model for Bi-Directionnal Traffic

    Full text link
    We investigate a cellular automaton (CA) model of traffic on a bi-directional two-lane road. Our model is an extension of the one-lane CA model of {Nagel and Schreckenberg 1992}, modified to account for interactions mediated by passing, and for a distribution of vehicle speeds. We chose values for the various parameters to approximate the behavior of real traffic. The density-flow diagram for the bi-directional model is compared to that of a one-lane model, showing the interaction of the two lanes. Results were also compared to experimental data, showing close agreement. This model helps bridge the gap between simplified cellular automata models and the complexity of real-world traffic.Comment: 4 pages 6 figures. Accepted Phys Rev

    Optimizing Traffic Lights in a Cellular Automaton Model for City Traffic

    Full text link
    We study the impact of global traffic light control strategies in a recently proposed cellular automaton model for vehicular traffic in city networks. The model combines basic ideas of the Biham-Middleton-Levine model for city traffic and the Nagel-Schreckenberg model for highway traffic. The city network has a simple square lattice geometry. All streets and intersections are treated equally, i.e., there are no dominant streets. Starting from a simple synchronized strategy we show that the capacity of the network strongly depends on the cycle times of the traffic lights. Moreover we point out that the optimal time periods are determined by the geometric characteristics of the network, i.e., the distance between the intersections. In the case of synchronized traffic lights the derivation of the optimal cycle times in the network can be reduced to a simpler problem, the flow optimization of a single street with one traffic light operating as a bottleneck. In order to obtain an enhanced throughput in the model improved global strategies are tested, e.g., green wave and random switching strategies, which lead to surprising results.Comment: 13 pages, 10 figure

    Alpha-particle-induced breakup of the deuteron

    Get PDF
    Alpha-particle-induced deuteron breakup reactions have been studied in single-counter measurements at incident alpha-particle energies of 41.6 and 29.3 MeV. Simultaneous differential and total cross-section measurements have been carried out on protons, deuterons, and alpha particles. Unambiguous evidence for final-state resonance effects in the alpha-nucleon interactions have been obtained, particularly from the proton energy spectra; the p3/2 alpha-nucleon resonances corresponding to the He5 and Li5 ground states play important roles. As anticipated, phase-space-factor and zero-range Born-approximation calculations failed to reproduce the observed energy spectra. A more exact analysis which explicitly includes the alpha-nucleon interactions, represented by Gammel-Thaler phenomenological potentials, does provide good agreement with the experimental results both in spectrum shape and in total breakup cross section

    Experiences with a simplified microsimulation for the Dallas/Fort Worth area

    Full text link
    We describe a simple framework for micro simulation of city traffic. A medium sized excerpt of Dallas was used to examine different levels of simulation fidelity of a cellular automaton method for the traffic flow simulation and a simple intersection model. We point out problems arising with the granular structure of the underlying rules of motion.Comment: accepted by Int.J.Mod.Phys.C, 20 pages, 14 figure

    The Effect Of Delay Times On The Optimal Velocity Traffic Flow Behavior

    Full text link
    We have numerically investigated the effect of the delay times Ï„f\tau_f and Ï„s\tau_s of a mixture of fast and slow vehicles on the fundamental diagram of the optimal velocity model. The optimal velocity function of the fast cars depends not only on the headway of each car but also on the headway of the immediately preceding one. It is found that the small delay times have almost no effects, while, for sufficiently large delay time Ï„s\tau_s the current profile displays qualitatively five different forms depending on Ï„f\tau_f, Ï„s\tau_s and the fractions dfd_f and dsd_s of the fast and slow cars respectively. The velocity (current) exhibits first order transitions at low and/or high densities, from freely moving phase to the congested state, and from congested state to the jamming one respectively accompanied by the existence of a local minimal current. Furthermore, there exist a critical value of Ï„f\tau_f above which the metastability and hysteresis appear. The spatial-temporal traffic patterns present more complex structur
    • …
    corecore