1,541 research outputs found

    RIPK3-deficient mice were not protected from nephrotoxic nephritis

    Get PDF
    Background/Aims: Necrotizing glomerular lesions are a feature of severe glomerulonephritis. Unlike apoptosis, cellular necrosis has the potential to release damage-associated proteins into the microenvironment, thereby potentiating inflammation. Until recently necrosis was thought to be an unregulated cellular response to injury. However, recent evidence suggests that under certain circumstances receptor mediated necrosis occurs in response to death ligand signalling, one form of which is termed necroptosis. RIPK3, a receptor interacting protein, is a limiting step in the intracellular signalling pathway of necroptosis. A non-redundant role for RIPK3 has been implicated in mouse models of renal ischaemia reperfusion injury and toxic renal injury. The aim of this study was to investigate the role of RIPK3 in nephrotoxic nephritis (NTN), a model of immune complex glomerulonephritis in mice. Methods: We induced NTN in RIPK3-/- and WT mice, comparing histology and renal function in both groups. Results: There was no improvement in urinary albumin creatinine ratio, serum urea, glomerular thrombosis or glomerular macrophage infiltration in the RIPK3-/- mice compared to WT. There was also no difference in number of apoptotic cells in glomeruli as measured by TUNEL staining between the RIPK3-/- and WT mice. Conclusion: The data suggests that RIPK3 is not on a critical pathway in the pathogenesis of nephrotoxic nephritis

    Complement activation in IgA nephropathy

    Get PDF
    IgA nephropathy pathogenesis is incompletely understood, and this limits the development of disease-specific biomarkers and effective therapies. Evidence of complement activity in IgA nephropathy is well established. However, a growing body of research indicates complement activity is an important contributor to IgA nephropathy pathology. In particular, multiple associations have been identified between complement alternative, lectin and terminal pathway proteins and IgA nephropathy severity. Recently, we have also gained insight into possible mechanisms that could link glomerular IgA deposition, complement activity, glomerular inflammation and disease severity. Ongoing clinical trials of therapeutic complement inhibitors will provide insight into the importance of complement activity to IgA nephropathy pathogenesis. Further research into mechanisms of complement activity is essential to improving our understanding and management of patients with IgA nephropathy

    A Upf3b-mutant mouse model with behavioral and neurogenesis defects.

    Get PDF
    Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA degradation pathway that acts on RNAs terminating their reading frames in specific contexts. NMD is regulated in a tissue-specific and developmentally controlled manner, raising the possibility that it influences developmental events. Indeed, loss or depletion of NMD factors have been shown to disrupt developmental events in organisms spanning the phylogenetic scale. In humans, mutations in the NMD factor gene, UPF3B, cause intellectual disability (ID) and are strongly associated with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia (SCZ). Here, we report the generation and characterization of mice harboring a null Upf3b allele. These Upf3b-null mice exhibit deficits in fear-conditioned learning, but not spatial learning. Upf3b-null mice also have a profound defect in prepulse inhibition (PPI), a measure of sensorimotor gating commonly deficient in individuals with SCZ and other brain disorders. Consistent with both their PPI and learning defects, cortical pyramidal neurons from Upf3b-null mice display deficient dendritic spine maturation in vivo. In addition, neural stem cells from Upf3b-null mice have impaired ability to undergo differentiation and require prolonged culture to give rise to functional neurons with electrical activity. RNA sequencing (RNAseq) analysis of the frontal cortex identified UPF3B-regulated RNAs, including direct NMD target transcripts encoding proteins with known functions in neural differentiation, maturation and disease. We suggest Upf3b-null mice serve as a novel model system to decipher cellular and molecular defects underlying ID and neurodevelopmental disorders

    Prediction of Lifetime and 10-Year Risk of Cancer in Individual Patients With Established Cardiovascular Disease

    Get PDF
    BACKGROUND: Cardiovascular disease (CVD) and cancer share many common risk factors; patients with CVD also may be at risk of developing cancer. OBJECTIVES: The aim of this study was to derive and externally validate prediction models for the estimation of lifetime and 10-year risk for total, colorectal, and lung cancer in patients with established CVD. METHODS: Data from patients with established CVD from the UCC-SMART cohort (N ¼ 7,280) were used for model development, and from the CANTOS trial (N ¼ 9,322) for model validation. Predictors were selected based on previously published cancer risk scores, clinical availability, and presence in the derivation dataset. Fine and Gray competing risk-adjusted lifetime models were developed for the outcomes total, colorectal, and lung cancer. RESULTS: Selected predictors were age, sex, smoking, weight, height, alcohol use, antiplatelet use, diabetes, and C-reactive protein. External calibration for the 4-year risk of lung, colorectal, and total cancer was reasonable in our models, as was discrimination with C-statistics of 0.74, 0.64, and 0.63, respectively. Median predicted lifetime and 10-year risks in CANTOS were 26% (range 1% to 52%) and 13% (range 1% to 31%) for total cancer; 4% (range 0% to 13%) and 2% (range 0% to 6%) for colorectal cancer; and 5% (range 0% to 37%) and 2% (range 0% to 24%) for lung cancer. CONCLUSIONS: Lifetime and 10-year risk of total, colorectal, and lung cancer can be estimated reasonably well in patients with established CVD with readily available clinical predictors. With additional study, these tools could be used in clinical practice to further aid in the emphasis of healthy lifestyle changes and to guide thresholds for targeted diagnostics and screening

    Progressive IgA Nephropathy Is Associated With Low Circulating Mannan-Binding Lectin-Associated Serine Protease-3 (MASP-3) and Increased Glomerular Factor H-Related Protein-5 (FHR5) Deposition

    No full text
    Introduction IgA nephropathy (IgAN) is characterized by glomerular deposition of galactose-deficient IgA1 and complement proteins and leads to renal impairment. Complement deposition through the alternative and lectin activation pathways is associated with renal injury. Methods To elucidate the contribution of the lectin pathway to IgAN, we measured the 11 plasma lectin pathway components in a well-characterized cohort of patients with IgAN. Results M-ficolin, L-ficolin, mannan-binding lectin (MBL)–associated serine protease (MASP)-1 and MBL-associated protein (MAp) 19 were increased, whereas plasma MASP-3 levels were decreased in patients with IgAN compared with healthy controls. Progressive disease was associated with low plasma MASP-3 levels and increased glomerular staining for C3b/iC3b/C3c, C3d, C4d, C5b-9, and factor H–related protein 5 (FHR5). Glomerular FHR5 deposition positively correlated with glomerular C3b/iC3b/C3c, C3d, and C5b-9 deposition, but not with glomerular C4d. These observations, together with the finding that glomerular factor H (fH) deposition was reduced in progressive disease, are consistent with a role for fH deregulation by FHR5 in renal injury in IgAN. Conclusion Our data indicate that circulating MASP-3 levels could be used as a biomarker of disease severity in IgAN and that glomerular staining for FHR5 could both indicate alternative complement pathway activation and be a tissue marker of disease severity

    O- and N-glycosylation of serum immunoglobulin A is associated with IgA nephropathy and glomerular function.

    Get PDF
    BACKGROUND: IgA nephropathy (IgAN) is the most common primary glomerular disease worldwide and is a leading cause of renal failure. The disease mechanisms are not completely understood, but a higher abundance of galactose-deficient IgA is recognized to play a crucial role in IgAN pathogenesis. Although both types of human IgA (IgA1 and IgA2) have several N-glycans as post-translational modification, only IgA1 features extensive hinge-region O-glycosylation. IgA1 galactose deficiency on the O-glycans is commonly detected by a lectin-based method. To date, limited detail is known about IgA O- and N-glycosylation in IgAN. METHODS: To gain insights into the complex O- and N-glycosylation of serum IgA1 and IgA2 in IgAN, we used liquid chromatography-mass spectrometry (LC-MS) for the analysis of tryptic glycopeptides of serum IgA from 83 patients with IgAN and 244 age- and sex-matched healthy controls. RESULTS: Multiple structural features of N-glycosylation of IgA1 and IgA2 were associated with IgAN and glomerular function in our cross-sectional study. These features included differences in galactosylation, sialylation, bisection, fucosylation, and N-glycan complexity. Moreover, IgA1 O-glycan sialylation was associated with both the disease and glomerular function. Finally, glycopeptides were a better predictor of IgAN and glomerular function than galactose-deficient IgA1 levels measured by lectin-based ELISA. CONCLUSIONS: Our high-resolution data suggest that IgA O- and N-glycopeptides are promising targets for future investigations on the pathophysiology of IgAN and as potential noninvasive biomarkers for disease prediction and deteriorating kidney function

    Inflammatory Markers and Outcomes in Cardiovascular Disease

    Get PDF
    In a commentary on two new research studies in PLoS Medicine, Leonard Kritharides discusses the role of inflammatory markers in predicting cardiovascular outcomes and patients' responses to treatment

    Long-term mortality prediction after operations for type A ascending aortic dissection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are few long-term mortality prediction studies after acute aortic dissection (AAD) Type A and none were performed using new models such as neural networks (NN) or support vector machines (SVM) which may show a higher discriminatory potency than standard multivariable models.</p> <p>Methods</p> <p>We used 32 risk factors identified by Literature search and previously assessed in short-term outcome investigations. Models were trained (50%) and validated (50%) on 2 random samples from a consecutive 235-patient cohort. NN were run only on patients with complete data for all included variables (N = 211); SVM on the overall group. Discrimination was assessed by receiver operating characteristic area under the curve (AUC) and Gini's coefficients along with classification performance.</p> <p>Results</p> <p>There were 84 deaths (36%) occurring at 564 ± 48 days (95%CI from 470 to 658 days). Patients with complete variables had a slightly lower death rate (60 of 211, 28%). NN classified 44 of 60 (73%) dead patients and 147 of 151 (97%) long-term survivors using 5 covariates: immediate post-operative chronic renal failure, circulatory arrest time, the type of surgery on ascending aorta plus hemi-arch, extracorporeal circulation time and the presence of Marfan habitus. Global accuracies of training and validation NN were excellent with AUC respectively 0.871 and 0.870 but classification errors were high among patients who died. Training SVM, using a larger number of covariates, showed no false negative or false positive cases among 118 randomly selected patients (error = 0%, AUC 1.0) whereas validation SVM, among 117 patients, provided 5 false negative and 11 false positive cases (error = 22%, AUC 0.821, p < 0.01 versus NN results). An html file was produced to adopt and manipulate the selected parameters for practical predictive purposes.</p> <p>Conclusions</p> <p>Both NN and SVM accurately selected a few operative and immediate post-operative factors and the Marfan habitus as long-term mortality predictors in AAD Type A. Although these factors were not new per se, their combination may be used in practice to index death risk post-operatively with good accuracy.</p
    • …
    corecore