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Abstract  
Background Immunoglobulin A (IgA) nephropathy (IgAN) is the most common primary glomerular 
disease worldwide, and is a leading cause of renal failure. The disease mechanisms are not completely 
understood, but a higher abundance of galactose-deficient IgA is recognized to play a crucial role in 
IgAN pathogenesis. While both types of human IgA (IgA1 and IgA2) have several N-glycans as 
posttranslational modification, only IgA1 features extensive hinge-region O-glycosylation. IgA1 
galactose-deficiency on the O-glycans is commonly detected by a lectin-based method. To date, limited 
detail is known about IgA O- and N-glycosylation in IgAN. 
Methods To gain insights into the complex O- and N-glycosylation of serum IgA1 and IgA2 in IgAN, 
we employed liquid chromatography-mass spectrometry (LC-MS) for the analysis of tryptic 
glycopeptides of serum IgA from 83 IgAN patients and 244 age and sex-matched healthy controls. 
Results Multiple structural features of N-glycosylation of IgA1 and IgA2 were associated with IgAN 
and glomerular function in our cross-sectional study. This included differences in galactosylation, 
sialylation, bisection, fucosylation, and N-glycan complexity. Moreover, IgA1 O-glycan sialylation was 
associated with both disease risk and glomerular function. Finally, glycopeptides were a better predictor 
of IgAN and glomerular function than galactose-deficient IgA1 levels measured by lectin-based ELISA.  
Conclusions Our high-resolution data suggest that IgA O- and N-glycopeptides are promising targets 
for future investigations on the pathophysiology of IgAN and as potential noninvasive biomarkers for 
disease prediction and deteriorating kidney function. 
 
Significance Statement 
IgA nephropathy (IgAN) is the commonest primary glomerular disease worldwide with galactose 
deficient IgA (gd-IgA) being considered to play a key role in its pathogenesis. While this is widely 
reported, it is unclear how IgA glycosylation changes with disease. The use of a novel mass 
spectrometry-based approach allowed obtaining a more complete picture of IgA glycosylation changes 
in IgAN, and of the relationship between IgA glycosylation and kidney function. Multiple structural 
features of both O- and N-linked glycans were associated with the presence and severity of IgAN and  
kidney function. Our high-resolution data suggest that IgA O- and N-glycopeptides are promising 
targets for future studies on the pathophysiology of IgAN and as potential noninvasive biomarkers for 
disease prediction.  
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Introduction 
Immunoglobulin A (IgA) nephropathy (IgAN), or Berger's disease, is the most common 
glomerulonephritis worldwide (1). The disease course is complex, varying from a mild form to a 
progressive disease leading to renal failure in up to 40% of patients within 20 years (1,2). Clinical 
presentation also differs greatly with gender, ethnicity, and age (1). IgAN is diagnosed by the presence 
of IgA dominant or co-dominant mesangial deposits on renal biopsy (3). Improved, noninvasive 
biomarkers of disease severity and progression to chronic kidney disease are needed to appropriately 
stratify patient treatment and develop novel, effective therapies.  
IgAN pathogenesis is generally considered to follow the “four-hit hypothesis” (4). In this hypothesis, 
the pathogenesis is initiated by increased levels of circulating galactose-deficient IgA1 (gd-IgA; hit 1). 
gd-IgA is then recognized by anti-glycan autoantibodies (hit 2), leading to the formation of immune 
complexes (hit 3) that may deposit in the kidney (hit 4) and cause glomerular inflammation, complement 
activation, and kidney injury (4).  
IgA1, unlike IgA2, has a unique hinge region located between conserved regions 1 and 2 of the heavy 
chain (5). The hinge region has 9 potential sites for O-glycosylation, of which 3-6 are reported to be 
consistently glycosylated (6–8). O-glycans located in the hinge region of IgA1 are typically core 1 
glycans with the structure galactoseβ1-3N-acetylgalactosamine (GalNAc), which may be extended with 
up to two sialic acid residues (6) (Figure 1). In IgAN patients regardless of ethnicity or age, an increased 
proportion of the IgA1 hinge region O-glycans lack galactose (gd-IgA) and terminate, instead, in 
GalNAc or sialylated GalNAc (9–13). The gd-IgA levels are elevated in patients with progressive IgAN 
compared to stable patients, and a negative correlation between gd-IgA level and the estimated 
glomerular filtration rate (eGFR) has been found (12). 
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Measurement of gd-IgA in blood samples is typically achieved by ELISA incorporating the use of a 
lectin, Helix aspersa agglutinin (HAA), which recognizes terminal GalNAc residues on O-glycans. 
Another lectin, Jacalin, is often used to isolate IgA from samples for further analysis. Whilst lectin-
based approaches are useful tools in this aspect, variability in their specificities and interferences, 
especially by the co-presence of sialic acids, limit their robustness (14–16).  
While aberrant O-glycosylation of gd-IgA in IgAN has been widely reported, not much is known about 
the role of N-glycans. Both IgA1 and IgA2 are N-glycosylated. IgA1 contains two N-linked 
glycosylation sites on each heavy chain (Asn263/Asn459) and IgA2 contains an additional two or three 
N-glycans (Figure 1). The N-glycans on IgA are reported to be mainly complex-type, digalactosylated 
diantennary structures (6,8). Elevated levels of sialylation (17) and mannosylation (18) of serum IgA1 
N-glycans from IgAN patients have been identified. Moreover, mice with a gene knock-out (β4GalT) 
leading to agalactosylated N-glycans developed IgAN-like glomerular lesions upon IgA deposition 
(19).  
Despite the involvement of IgA glycosylation in the pathogenesis of IgAN, it is still largely unclear 
how IgA glycosylation changes with disease. The molecular nature of IgA O- and N- glycosylation in 
IgAN has hitherto been incompletely explored. Here, we used our new mass spectrometry (MS) based 
approach for IgA O- and N-glycosylation analysis in a sizable case-control cohort to obtain a more 
complete picture on the IgA glycosylation changes in IgAN at an unprecedented level of detail and 
resolution and to further investigate the relationship of IgA glycosylation and kidney function.  
 

Methods  
Study Populations 
IgA nephropathy patient samples were collected as part of the Causes and Predictors of Outcome in 
IgA Nephropathy Study, a retrospective cohort study ethically approved by the UK National Research 
Ethics Service Committee. All individuals provided informed written consent (14/LO/0155). Here, we 
investigated 83 unrelated patients from the UK with serum samples available and complete clinical 
follow-up at the time of recruitment (Supplemental Table S1). Estimated glomerular filtration rate 
(eGFR), estimated by CKD-EPI and corrected for body surface area, was used as a biomarker of renal 
function (12).  
The control samples were randomly ascertained among healthy UK twins from the TwinsUK adult twin 
registry (20), and age- and sex-matched with the IgA nephropathy cases (Supplemental Figure S1). 
The sample included 244 individuals (49 monozygotic and 64 dizygotic twin pairs, and 18 singletons; 
Supplemental Table S1). St. Thomas’ Hospital Research Ethics Committee approved this study, and 
all twins provided informed written consent.  
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Figure 1. Schematic representation of IgA1 and IgA2 with examples for O- and N-glycan structures. A. Each IgA1 heavy 
chain contains two N-glycosylation sites, i.e., at N144 and N340, which are occupied by complex-type N-glycans, next to six 
O-glycosylation sites, i.e., at T106, T109, S111, S113, T114, and T117. All six O-glycosylation sites in the hinge-region of 
IgA1 are present on a single tryptic peptide (HYT) (6,8). B. With our MS-based approach, we observed three different N-
glycosylation sites on IgA2, i.e., at N131, N205 and N327, which were occupied with complex-type N-glycans. Glycopeptides 
indicating glycosylation on the two other potential N-glycosylation sites were not detected in our study. C. Symbols and 
example structures of O- and N-glycans. In this work, we refer to the first three letters of the tryptic peptide sequence of the 
detected glycopeptides: HYT for the multiply O-glycosylated hinge-region peptide, LSL for the glycopeptide with the N-
glycosylation site N144 or N131 on IgA1 or IgA2, respectively, TPL for the glycopeptide with the IgA2 N-glycosylation site 
N205, LAG for the glycopeptide with the N-glycosylation site N340/N327 on IgA1/IgA2, which was detected with either a 
terminal tyrosine (LAGY), or as truncated form (LAGC). Glycosylation site numbering according to UniProtKB. Figure 
modified from (55). 
 

Measurement of Serum IgA and gd-IgA Levels 
Serum IgA levels were measured using enzyme-linked immunosorbent assay (ELISA) as previously 
described (21). The capture antibody was the F(ab’)2 fragment goat anti-human IgA (Jackson Immuno-
Research, West Grove, PA), and the detection antibody was the F(ab’)2 fragment biotinylated goat anti-
human IgA1 (Jackson Immuno-Research).  
Serum gd-IgA1 levels were measured using a lectin-based ELISA as previously described (21). The 
capture antibody was a polyclonal rabbit antihuman IgA (Dako, Glostrup, Denmark). The detection 
involved Helix aspersa agglutinin-biotin (Sigma, Darmstadt, Germany), followed by poly-streptavidin 
horseradish peroxidase (Pierce, Waltham, MA).  
The intraclass correlation coefficient for the IgA assay was 0.74 (95% confidence interval, 0.63–0.83), 
and that for the gd-IgA1 assay was 0.89 (95% confidence interval, 0.73–0.95). 
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IgA glycopeptide analysis by mass spectrometry 
A detailed description of the material and methods can be found in the Supplemental Methods. Briefly, 
serum samples from cases and controls, together with 22 pooled-plasma standards were pipetted onto 
96-well plates in randomized manner. IgA were captured from 10 µL of serum using CaptureSelectTM 
IgA affinity beads (ThermoFisher). (Glyco-)Peptides were generated by reduction, alkylation and 
digestion of the protein with trypsin. Tryptic digests were separated by reversed-phase nano-liquid 
chromatography (LC) on a C18 column (75 µm × 100 mm, particle size 1.7 µm) and analyzed by mass 
spectrometry (MS) using an Impact HD quadrupole time-of-flight-MS system (Bruker Daltonics, 
Bremen, Germany) equipped with a nanoBooster, as previously described (22). 
Raw LC-MS data were converted to mzXML using MSConvert. LaCyTools (23) (version 1.0.1) was 
used to align the LC runs, to calibrate (Supplemental Table S2) the mass spectra, and to extract 
glycopeptide signal intensities. For the extraction step, a previously reported list of potential IgA 
glycopeptide analytes was used (24–26), in addition to manual identification of glycoforms in the 
averaged spectra of 20 samples of both healthy individuals and patients.  
Quality control was based on signal-to-noise, exact mass deviation, and isotopic pattern as described 
previously (23). 69 glycopeptides were retained and quantified. Their absolute signal intensities were 
normalized to the intensity sum of all glycopeptide species sharing the same tryptic peptide sequence, 
resulting in relative intensities. In this manuscript, IgA1 and IgA2 glycopeptide names are comprised 
by the letter codes of the first three amino acids of the peptide sequence: HYT, LSL, TPL and LAG, 
the last detected in two variants, i.e., as LAGC and LAGY (Figure 1). The peptide name is followed 
by the glycan composition indicating the number of hexoses (H), N-acetylhexosamines (N), fucoses 
(F), and sialic acids (S; Supplemental Table S2).  
Structurally similar glycopeptides were summarized into 52 derived traits calculated from the relative 
intensities, as illustrated in Supplemental Table S3. For example, the abundances of all bisected 
diantennary structures within the TPL glycopeptide cluster were summed and divided by the sum of the 
abundances of all structures within the TPL cluster, resulting in the derived trait TPL_A2FB, bisection 
of fucosylated diantennary glycans with the formula: A2FB = (H4N5F1S0 + H5N5F1S0 + H4N5F1S1 
+ H5N5F1S1 + H5N5F1S2) / (H4N5F1S0 + H5N5F1S0 + H5N4F1S1 + H4N5F1S1 + H5N5F1S1 + 
H5N4F1S2 + H5N5F1S2). Since each measured glycopeptide structure carries different types of 
monosaccharides, derived traits can give a more composite and robust measure of the different 
glycosylation features, i.e., for N-glycans (27), complexity/branching (diantennary vs triantennary), 
bisection, fucosylation, and, for both O- and N-glycans, galactosylation and sialylation. 
 
Statistical analyses  
The relative intensities of the detected glycopeptides and the derived trait values were corrected for 
batch effects (plate, plate row, and column) in R (version 3.3.3) using the function ComBat from the R 
package sva (release 3.2) on log-transformed data. Outliers, defined as measurements deviating more 
than three standard deviations from the mean of each trait, were removed. To ensure the normality of 
their distribution, the relative intensities of the detected glycopeptides as well as of the derived traits 
were quantile normalized.  
gd-IgA level and IgAN status (case vs control) were tested for association with glycopeptides and 
derived traits using a linear mixed model using the function lmer from the R package lmerTest (version 
3.1), including age, sex, and their interaction term as fixed effects, and family structure as a random 
effect, to correct for the non-independence of the twin observations. To avoid potential spurious 
associations due to differences in glycan composition between cases and controls, association with gd-
IgA levels was assessed using healthy individuals only. eGFR (assessed in IgAN patients only) was 
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tested for association using a linear regression model (function lm, from the stats R package, version 
3.6.1). Age, sex, and their interaction term were included as covariates.  
Power calculation was performed using the pwr R package (version 1.3) and asking for the power to 
detect, in a sample of 83 cases and 244 controls,  a Cohen’s conventional medium effect size (28) of 
0.5 of a standard deviation at an α-level of 0.05/(23x3)=7.3x10-4 and 0.05/(16x3)=1.0x10-3, for 
measured and derived traits, respectively. 
We considered an association significant when its p-value passed a Bonferroni-derived threshold of 
0.05/Neff, where Neff is the effective number of independent tests taking into account the strong 
correlation among glycan relative intensities. Neff was calculated using the approach proposed by Li & 
Ji (29) and multiplied by the number of phenotypes analyzed in this study. Neff was 23(×3) for measured 
glycopeptides and 16(×3) for derived traits.  
We further evaluated, for both IgAN and glomerular function, the predictive power of a model including 
only the gd-IgA serum levels, and a model including either the glycopeptides or derived traits 
significantly associated with IgAN/glomerular function. In this second model, due to the high 
correlation among traits, if two traits had a Pearson’s correlation larger than 0.9, only the most 
significantly associated was used. Predictive powers were evaluated using the McFadden's adjusted 
pseudo-R2 (30) (evaluated via the function PseudoR2, from the DescTools R package, version 0.99.39), 
for the binary trait IgAN, and adjusted R2, for the continuous trait eGFR (evaluated via the lm function). 
The adjusted values allow penalizing for the number of predictors in the model (k=1 when only gd-IgA 
levels are used, and k>1 when the glycopeptides or derived traits are used). 

Results  
Glycosylation features are associated with the level of gd-IgA in healthy individuals 
As a first comparison of the traditional lectin-based method and our MS-based approach for measuring 
IgA glycosylation, we assessed the cross-sectional associations between gd-IgA values and MS-
detected glycosylation traits. Using data from 236 healthy individuals, we found associations between 
gd-IgA and 26 out of 30 detected O-glycopeptides (HYT cluster) and all 7 derived O-glycan traits 
(Supplemental Table S4). The strongest associations were observed with decreased sialylation 
(HYT_nS, HYT_nS>nG, HYT_SperG) and galactosylation (HYT_GalperGalNAc and HYT_nGal), 
along with a relative increase of GalNAcylation (HYT_nGalNAc>nG and HYT_nGalNAc; Figure 2), 
which showed a similar trend in IgAN patients (Supplemental Figure S2).  N-glycosylation traits from 
the LAGC cluster were also associated with gd-IgA, although to a lesser extent than O-glycosylation 
(Supplemental Table S4).  Moreover, we compared the associations between gd-IgA and 
glycopeptides with and without correction for IgA1 titer, in a subset of 156 healthy individuals for 
whom IgA1 titer was available. IgA1 titer correction had negligible effects on the associations 
(Supplemental Table S5).  
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Figure 2. Main associations between derived O-glycosylation traits, and gd-IgA1 levels detected by HAA lectin in 236 
healthy individuals. Quantile-normalised age- and sex-corrected values are plotted, are plotted, and each scatterplot reports 
effect size (β), standard error (SE), and p-value (P) of the linear regression analysis. Derived traits HYT_nS, HYT_nGal, and 
HYT_nGalNAc correspond to average number of sialic acids, galactoses, and N-acetylgalactosamines, respectively. 
Monosaccharide symbols are depicted, in black and white, according with the nomenclature of the Consortium for Functional 
Glycomics, and were generated using GlycoWorkbench (56).  

 
O- and N-glycosylation of IgA is associated with IgA nephropathy 
We used a case-control study design, including 83 IgAN patients and 244 healthy controls, to 
investigate cross-sectional associations between IgAN and IgA O- and N-glycosylation features 
detected by MS. Using 83 IgAN patients and 244 healthy controls we have ≥ 70% power to detect a 
difference of 0.5 of a standard deviation between groups at a Bonferroni-derived p-value of 
0.05/(23×3)=7.3×10-4 and 0.05/(16×3)=1.0×10-3, for measured and derived traits, respectively.  
We found that galactosylation of the N-glycopeptides in the TPL and LSL clusters, next to sialylation 
in TPL and sialylation of the HYT O-glycopeptides, were lower in IgAN patients compared to controls, 
whereas bisection and sialylation in LSL, diantennary glycans in LAGCa, TPL, and LAGCb, and 
fucosylation in LAGCb were higher in patients (Figure 3, Supplemental Table S6).  
 
O- and N-glycosylation of IgA is associated with renal function 
Using data from IgAN patients, we sought association between glycan traits and estimated glomerular 
filtration rate (eGFR), a marker of renal function. N-glycosylation features from all detected IgA 
glycopeptide clusters were associated with eGFR: bisection of LAGY, LSL, LAGC, and TPL was 
lower, while galactosylation and sialylation of TPL and LSL was higher in patients with higher eGFR 
(Figure 4; Supplemental Table S7). Regarding O-glycosylation, only sialylation showed significant, 
positive associations with eGFR (HYT_nS, HYT_SperG, and HYT_nS>nG), reflected in low levels of 
mono- or disialylated glycopeptides, e.g., HYT_H4N4F0S1, and high levels of multisialylated ones, 
e.g., HYT_H4N4F0S4 (Figure 4, Supplemental Table S7). 
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Figure 3. Main associations between derived glycosylation traits in serum IgA from healthy controls and individuals 
with IgA nephropathy (N=327). Quantile-normalised age- and sex-corrected values are plotted, and each boxplot reports 
effect size (β), standard error (SE), and p-value (P) of the regression analysis. Glycopeptide derived trait nomenclature refers 
to the first three letters of the tryptic amino acid sequence followed by the glycosylation features as calculated from detected 
glycopeptides (Supplemental Table S3); glycosylation traits: A2FS0G, galactosylation of non-sialylated fucosylated 
diantennary glycans; CS, sialylation within complex glycans; nS>nG, relative intensity sum of structures in which the number 
of sialic acids exceeds the number of galactoses; A2F0S0B, bisection of non-fucosylated non-sialylated diantennary; A2F0GS, 
sialic acid per galactose in non-fucosylated diantennary; A2SF, fucosylation of sialylated diantennary. Monosaccharide 
symbols are depicted, in black and white, according with the nomenclature of the Consortium for Functional Glycomics, and 
were generated using GlycoWorkbench (56).  
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Figure 4. Main associations between IgA O-glycosylation traits and eGFR in 75 IgAN patients. Quantile-normalised age- 
and sex-corrected values are plotted, and each scatterplot reports effect size (β), standard error (SE), and p-value (P) for the 
linear regression analysis. Glycopeptide derived trait nomenclature refers to the first three letters of the tryptic amino acid 
sequence followed by the glycosylation features as calculated from detected glycopeptides (Supplemental Table S3); 
glycosylation traits: A2FB, bisection of fucosylated diantennary glycans; A2SB, bisection of sialylated diantennary; A2F0B, 
bisection of non-fucosylated diantennary; A2FSG, galactosylation of sialylated fucosylated diantennary; CS, sialylation within 
complex glycans; nS, average number of sialic acids. Glycan structures are reported below each panel. Monosaccharide 
symbols are depicted, in black and white, according to the nomenclature of the Consortium for Functional Glycomics, and 
were generated using GlycoWorkbench (56). 
 

 

Glycopeptides and derived traits are better predictors of IgAN status and renal function than gd-
IgA levels 
Using McFadden's adjusted pseudo-R2 (30) we found that glycopeptides and derived traits which were 
associated with IgAN from our analyses were better predictor of the disease than gd-IgA levels, with a 
pseudo-R2 of 0.14, 0.12 and 0.02, for glycopeptides, derived traits, and gd-IgA levels, respectively. 
Analogously, glycopeptides and derived traits associated with eGFR showed a pseudo-R2 of 0.23 and 
0.22, respectively, vs 0.07 of gd-IgA levels. These results suggest that MS glycosylation data may not 
only give insights into the pathophysiology of IgAN but can also provide leads for noninvasive 
biomarkers for disease and deteriorating kidney function. 
A summary of the major associations with gd-IgA, IgAN, and glomerular function is visualized in 
Figure 5, for derived traits, and Supplemental Figure 3, for measured glycopeptides. 
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Figure 5. Summary of the associations of derived IgA glycan traits with gd-IgA levels, IgAN, and glomerular function. 
Line thickness represents effect size (the thicker the line, the stronger the effect’s absolute value). Solid lines: positive 
associations; dotted lines: negative associations. Derived traits are grouped by glycosylation features along with their structural 
representations. Monosaccharide symbols are depicted, in black and white, according to the nomenclature of the Consortium 
for Functional Glycomics, and were generated using GlycoWorkbench (56). Complete summary statistics are reported in 
Supplemental Tables 4, 6, and 7.  
 
 
Discussion 
This study is the first detailed report on site-specific O- and N-glycosylation signatures of serum IgA1 
and IgA2 in IgAN. We analysed a reasonably large cohort of 83 patients and 244 age- and sex-matched 
controls. Our high-resolution MS-based method features the relative quantitation of, in total, 69 O- and 
N-glycopeptide species, further summarized in 52 derived traits. Our data revealed disease associations 
with O-glycan sialylation and with all main N-glycosylation features, which include complexity, 
bisection, galactosylation, fucosylation, and sialylation.  
Altered glycosylation of IgA1 O-glycans in IgAN is widely reported. Our MS data reflect relative shifts 
of different glycosylation features due to total area normalization within a glycopeptide cluster. This is 
different to terminal GalNAc abundance detected by the lectin-based gd-IgA assay. Nevertheless, our 
MS data on relative O-glycan galactosylation, and on the relative abundance of GalNAc on O-
glycopeptides, can be related to the traditional lectin-based detection of truncated O-glycans with 
terminal GalNAc (GalNAcα1-Ser/Thr; Tn antigen). Both gd-IgA and IgA titers represent absolute 
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concentrations but become more comparable to our relative quantitation of MS data when gd-IgA is 
adjusted for IgA titers. Accordingly, we found a strong positive association of HAA lectin binding with 
the glycosylation trait HYT_nGalNAc>nG which reflects the presence of terminal GalNAc, and, 
consequently, a negative association with hinge-region galactosylation (HYT_GalperGalNAc, 
HYT_nGal) that is supposed to cap the HAA binding motif. Similarly, sialylation (HYT_nS>nG) was 
also inversely associated with gd-IgA level. This can partly be explained by the fact that terminal α2,3-
linked sialic acids can only be present when a galactose has been attached to the core GalNAc. This 
could also be explained by virtue of the lectin-based assay simply detecting gd-IgA as exposed GalNAc. 
In 2017, the first GWAS for aberrant O-glycosylation of IgA1 identified variants in the C1GALT1 and 
C1GALT1C1 genes that had large effects on gd-IgA1 levels (31) These genes respectively encode the 
enzyme core 1 β1–3-galactosyltransferase (C1GalT1) and COSMC, its molecular chaperone – 
molecular partners that are essential for the galactosylation of IgA1 O-glycans (32). Decreased 
expression and activity of C1GalT1 has been demonstrated in the B Cells of patients with IgAN (33–
35). Further studies have also demonstrated that genetic variation at CIGALT1 influences gd-IgA level 
(36,37). A recent study has also shown that decreased expression of Golgi matrix protein GM130, which 
is involved in glycosyltransferase tethering, is associated with reduced C1GalT1 protein level and 
increased galactose deficiency of IgA1 (38). It is therefore likely that downregulated expression of 
CIGALT1 in IgAN patients leads to reduced levels of galactosylation and subsequent reduced levels of 
sialylation and increased levels of exposed GalNAc, as detected in the lectin-ELISA and reflected in 
our results.  
The relative abundance of sialic acids was the only derived O-glycosylation trait that associated with 
IgAN and renal decline in IgAN patients. Our data suggest that decreased sialylation may also lead to 
increased presentation of terminal GalNAc, as lower sialylation significantly correlates with higher gd-
IgA levels. It is unclear from our study if decreased sialylation is an alteration of IgA glycosylation in 
itself, or a product of reduced galactosylation. Data on O-linked sialylation in IgAN is conflicting. In 
agreement with our findings two small-scale MS-based studies without quantitation reported decreased 
numbers of galactose, GalNAc and especially sialic acid residues, in both glomerular and serum IgA1 
in pooled samples from IgAN patients as compared to control serum pools (39,40). Conversely, 
increased expression of ST6GALNAC2, a gene encoding an enzyme that mediates sialylation of O-
glycans, has been reported to be positively correlated with IgAN (41). Interestingly, increased 
expression of another enzyme, ST6Gal1, correlates with gd-IgA levels (42). Further studies are required 
to disentangle the relationship between sialylation and IgAN. 
Regarding serum IgA N-glycosylation in IgAN, only a few small studies exist, and the possible 
implication of N-glycosylation in pathogenesis or renal decline is unknown. Here, we present the first 
detailed report on associations between serum IgA N-glycan galactosylation, sialylation, bisection and 
fucosylation with IgAN and related clinical parameters. Previously, lower IgA1 Fc-region 
galactosylation and lower IgA2 sialylation in IgAN patients were detected by lectin-based assays (43). 
Intriguingly, our findings of decreased N-linked sialylation and galactosylation, and increased bisection 
in IgAN and with worsening renal function, are similar to the N-glycosylation differences reported for 
human salivary vs plasma IgA (25). With this in mind, it is possible that our findings might partly reflect 
a disease-related increase of IgA molecular species connected to mucosal immune response, which has 
previously been suggested for IgAN (44).  
It is also feasible that our results could reflect a causal relationship of IgA N-glycosylation and IgAN 
pathogenesis via increased formation of polymeric IgA. In comparison to monomeric, polymeric IgA 
is increased in IgAN patients and it has been implicated in higher immune complex formation and 
glomerular deposition (45). Strikingly, mice with impaired terminal N-glycan galactosylation due to a 
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knock-out of the β4-galactosyltransferase I gene were shown to develop human IgAN-like glomerular 
lesions, with an increased serum IgA, especially the polymeric form (19). Our finding of decreased 
sialylation in IgAN and with worsening renal function might also reflect a higher abundance of 
polymeric IgA, which was reported to exhibit a lower degree of sialylation compared to its monomeric 
form, and thereby enhance binding to mannose-binding lectin as well as to mesangial cells (46–48). 
Similarly, a higher abundance of fucose and terminal GlcNAc (e.g., bisecting GlcNAc or 
ungalactosylated antenna GlcNAc) might also be involved in enhanced binding to mannose-binding 
lectin and subsequent complement activation via the lectin pathway (48). Desialylation and to a lesser 
extent, additional degalactosylation, has been shown to enhance the binding of polymeric IgA1 to 
human mesangial cells, as compared to untreated IgA1 in vitro (49). Of note, it is unclear to which 
extent this effect was attributed to O- or N-glycosylation, or a combination thereof. Notably, the 
ST6GAL1 gene, coding for an enzyme responsible for the terminal sialylation of N-glycans on different 
proteins including IgA, was associated with IgAN in Han Chinese (50). 
Large-scale O-glycomic studies, other than the one reported here and a site-specific O- and N-
glycosylation associations study with rheumatoid arthritis (24), are hitherto lacking due to the 
technologically challenging nature of these studies. Although a few reports do exist which associate N-
glycosylation of immunoglobulin G with kidney disease or glomerular function (51–53), none is 
available for IgAN, hampering our ability to compare IgAN glycosylation signatures displayed by 
different molecules. Analogously, linking phenotypic associations of the total plasma N-glycome with 
those found here for IgA glycosylation is complicated as many different glycoproteins contribute to the 
total plasma N-glycome, with mostly overlapping structures (54). An analysis of total serum glycans in 
kidney disease showed eGFR to be associated with higher absolute levels of biantennary 
digalactosylated disialylated glycans with and without bisection (53) yet information on the 
glycoproteins and glycosylation sites contributing to this signature is lacking. In comparison, our novel 
approach for specific IgA glycosylation analysis presented here provides these extra layers of 
information by covering all main glycosylation features present on 69 measured glycopeptides of IgA 
(54).  
We have made a first attempt to elucidate the complex O- and N-glycosylation of human serum IgA in 
relation to IgAN in a comprehensive fashion with direct detection employing high-resolution mass 
spectrometry. Due to the small sample size, we could not build and validate a predictive model for 
IgAN pathogenesis and renal decline. However, we have shown  that directly measured glycopeptide 
level IgA glycosylations are better predictors of both IgAN status and renal function than gd-IgA levels 
alone. Our results widen the current view on the potential role of IgA glycosylation in IgAN 
pathogenesis and in renal decline and open new opportunities for investigations on glycopeptides as 
potential biomarkers for disease onset and progression. We envisage that these results, together with 
the increasing interest in the use of glycomics in clinical settings, will encourage increased inclusion of 
IgA glycomics in studies, which will promote the development of targeted analysis panels and of 
absolute quantification approaches, currently hindered by the lack of stable isotope-labeled 
glycopeptide standards.  
In summary, we provide the first evidence of a possible role for IgA N-glycosylation in IgAN 
pathogenesis, which should be taken forward in mechanistic studies and could result in novel 
therapeutic and preventive approaches in the future.  
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