17 research outputs found
Recommended from our members
High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis.
This is the author accepted manuscript. The final version is available from NPG at http://www.nature.com/ng/journal/v47/n2/full/ng.3176.html#acknowledgmentsGenome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.We would like to thank the International PSC study group (http://www.ipscsg.org/) for sharing data. We are grateful to B.A. Lie and K. Holm for helpful discussions. J.D.R. holds a Canada Research Chair, and this work was supported by a US National Institute of Diabetes and Digestive and Kidney Diseases grant (NIDDK; R01 DK064869 and U01 DK062432). The laboratory of A.F. is supported by the German Ministry of Education and Research (BMBF) grant program e:Med (sysINFLAME). A.F. receives infrastructure support from the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence 'Inflammation at Interfaces' and holds an endowment professorship (Peter Hans Hofschneider Professorship) of the Foundation for Experimental Biomedicine (Zurich, Switzerland). Grant support for T.H.K. and A.F. was received from the European Union Seventh Framework Programme (FP7/2007-2013, grant number 262055, ESGI). M.N.C. is supported by the Intramural Research Program of the US National Institutes of Health (NIH), Frederick National Laboratory, Center for Cancer Research. This project has been funded in whole or in part with federal funds from the Frederick National Laboratory for Cancer Research, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the US Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US government. J.C.B. was supported by a Wellcome Trust grant (WT098051). D.M. and V.K. are supported by the NIHR Cambridge Biomedical Research Centre. L.P.S. is supported by an NIDDK grant (U01 DK062429-14). J.A.T. is supported by the UK Medical Research Council. D.P.B.M. is supported by the Leona M. and Harry B. Helmsley Charitable Trust, the European Union (305479) and by grants from the NIDDK (U01 DK062413, P01 DK046763-19, U54 DE023789-01), the National Institute of Allergy and Infectious Diseases (NIAID; U01 AI067068) and the Agency for Healthcare Research and Quality (AHRQ; HS021747). R.H.D. holds the Inflammatory Bowel Disease Genetic Research endowed chair at the University of Pittsburgh and was supported by an NIDDK grant (U01 DK062420) and a US National Cancer Institute grant (CA141743). S.L.H. and J.R.O. would like to also acknowledge the support of the US NIH (R01 NS049477 and 1U19 A1067152) and the National Multiple Sclerosis Society (RG 2899-D11). S.L. wishes to acknowledge support from the Australian National Health and Medical Research Council (R.D. Wright Career Development Fellowship, APP1053756)
Author Correction: Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease.
Insights into the genetic epidemiology of Crohn's and rare diseases in the Ashkenazi Jewish population
As part of a broader collaborative network of exome sequencing studies, we developed a jointly called data set of 5,685 Ashkenazi Jewish exomes. We make publicly available a resource of site and allele frequencies, which should serve as a reference for medical genetics in the Ashkenazim (hosted in part at https://ibd.broadinstitute.org, also available in gnomAD at http://gnomad.broadinstitute.org). We estimate that 34% of protein-coding alleles present in the Ashkenazi Jewish population at frequencies greater than 0.2% are significantly more frequent (mean 15-fold) than their maximum frequency observed in other reference populations. Arising via a well-described founder effect approximately 30 generations ago, this catalog of enriched alleles can contribute to differences in genetic risk and overall prevalence of diseases between populations. As validation we document 148 AJ enriched protein-altering alleles that overlap with "pathogenic" ClinVar alleles (table available at https://github.com/macarthur-lab/clinvar/blob/master/output/clinvar.tsv), including those that account for 10–100 fold differences in prevalence between AJ and non-AJ populations of some rare diseases, especially recessive conditions, including Gaucher disease (GBA, p.Asn409Ser, 8-fold enrichment); Canavan disease (ASPA, p.Glu285Ala, 12-fold enrichment); and Tay-Sachs disease (HEXA, c.1421+1G>C, 27-fold enrichment; p.Tyr427IlefsTer5, 12-fold enrichment). We next sought to use this catalog, of well-established relevance to Mendelian disease, to explore Crohn's disease, a common disease with an estimated two to four-fold excess prevalence in AJ. We specifically attempt to evaluate whether strong acting rare alleles, particularly protein-truncating or otherwise large effect-size alleles, enriched by the same founder-effect, contribute excess genetic risk to Crohn's disease in AJ, and find that ten rare genetic risk factors in NOD2 and LRRK2 are enriched in AJ (p < 0.005), including several novel contributing alleles, show evidence of association to CD. Independently, we find that genomewide common variant risk defined by GWAS shows a strong difference between AJ and non-AJ European control population samples (0.97 s.d. higher, p<10−16). Taken together, the results suggest coordinated selection in AJ population for higher CD risk alleles in general. The results and approach illustrate the value of exome sequencing data in case-control studies along with reference data sets like ExAC (sites VCF available via FTP at ftp.broadinstitute.org/pub/ExAC_release/release0.3/) to pinpoint genetic variation that contributes to variable disease predisposition across populations
Large-scale sequencing identifies multiple genes and rare variants associated with Crohn's disease susceptibility
Genome-wide association studies (GWASs) have identified hundreds of loci associated with Crohn's disease (CD). However, as with all complex diseases, robust identification of the genes dysregulated by noncoding variants typically driving GWAS discoveries has been challenging. Here, to complement GWASs and better define actionable biological targets, we analyzed sequence data from more than 30,000 patients with CD and 80,000 population controls. We directly implicate ten genes in general onset CD for the first time to our knowledge via association to coding variation, four of which lie within established CD GWAS loci. In nine instances, a single coding variant is significantly associated, and in the tenth, ATG4C, we see additionally a significantly increased burden of very rare coding variants in CD cases. In addition to reiterating the central role of innate and adaptive immune cells as well as autophagy in CD pathogenesis, these newly associated genes highlight the emerging role of mesenchymal cells in the development and maintenance of intestinal inflammation.Large-scale sequence-based analyses identify novel risk variants and susceptibility genes for Crohn's disease, and implicate mesenchymal cell-mediated intestinal homeostasis in disease etiology.Cellular mechanisms in basic and clinical gastroenterology and hepatolog
Large-scale sequencing identifies multiple genes and rare variants associated with Crohn’s disease susceptibility
peer reviewe
A protein-truncating R179X variant in RNF186 confers protection against ulcerative colitis
Protein-truncating variants protective against human disease provide in vivo validation of therapeutic targets. Here we used targeted sequencing to conduct a search for protein-truncating variants conferring protection against inflammatory bowel disease exploiting knowledge of common variants associated with the same disease. Through replication genotyping and imputation we found that a predicted protein-truncating variant (rs36095412, p.R179X, genotyped in 11,148 ulcerative colitis patients and 295,446 controls, MAF = up to 0.78%) in RNF186, a single-exon ring finger E3 ligase with strong colonic expression, protects against ulcerative colitis (overall P = 6.89 x 10(-7), odds ratio = 0.30). We further demonstrate that the truncated protein exhibits reduced expression and altered subcellular localization, suggesting the protective mechanism may reside in the loss of an interaction or function via mislocalization and/or loss of an essential transmembrane domain.Peer reviewe
Large-scale sequencing identifies multiple genes and rare variants associated with Crohn’s disease susceptibility
Genome-wide association studies (GWASs) have identified hundreds of loci associated with Crohn’s disease (CD). However, as with all complex diseases, robust identification of the genes dysregulated by noncoding variants typically driving GWAS discoveries has been challenging. Here, to complement GWASs and better define actionable biological targets, we analyzed sequence data from more than 30,000 patients with CD and 80,000 population controls. We directly implicate ten genes in general onset CD for the first time to our knowledge via association to coding variation, four of which lie within established CD GWAS loci. In nine instances, a single coding variant is significantly associated, and in the tenth, ATG4C, we see additionally a significantly increased burden of very rare coding variants in CD cases. In addition to reiterating the central role of innate and adaptive immune cells as well as autophagy in CD pathogenesis, these newly associated genes highlight the emerging role of mesenchymal cells in the development and maintenance of intestinal inflammation
Tu1906 EQTL Analysis Identifies Novel Associations Between Genotype and Gene Expression in the Human Intestine
Insights into the genetic epidemiology of Crohn's and rare diseases in the Ashkenazi Jewish population
This article has an erratum, DOI: 10.1371/journal.pgen.1008190As part of a broader collaborative network of exome sequencing studies, we developed a jointly called data set of 5,685 Ashkenazi Jewish exomes. We make publicly available a resource of site and allele frequencies, which should serve as a reference for medical genetics in the Ashkenazim (hosted in part at https://ibd.broadinstitute.org, also available in gnomAD at http://gnomad.broadinstitute.org). We estimate that 34% of protein-coding alleles present in the Ashkenazi Jewish population at frequencies greater than 0.2% are significantly more frequent (mean 15-fold) than their maximum frequency observed in other reference populations. Arising via a well-described founder effect approximately 30 generations ago, this catalog of enriched alleles can contribute to differences in genetic risk and overall prevalence of diseases between populations. As validation we document 148 AJ enriched protein-altering alleles that overlap with "pathogenic" ClinVar alleles (table available at https://github.com/macarthur-lab/clinvar/blob/master/output/clinvar.tsv), including those that account for 10 +/- 100 fold differences in prevalence between AJ and non-AJ populations of some rare diseases, especially recessive conditions, including Gaucher disease (GBA, p.Asn409Ser, 8-fold enrichment); Canavan disease (ASPA, p. Glu285Ala, 12-fold enrichment); and Tay-Sachs disease (HEXA, c.1421+1G>C, 27-fold enrichment; p.Tyr427IlefsTer5, 12-fold enrichment). We next sought to use this catalog, of well-established relevance to Mendelian disease, to explore Crohn's disease, a common disease with an estimated two to fourfold excess prevalence in AJ. We specifically attempt to evaluate whether strong acting rare alleles, particularly protein-truncating or otherwise large effect-size alleles, enriched by the same founder-effect, contribute excess genetic risk to Crohn's disease in AJ, and find that ten rare genetic risk factors in NOD2 and LRRK2 are enriched in AJ (p <0.005), including several novel contributing alleles, show evidence of association to CD. Independently, we find that genomewide common variant risk defined by GWAS shows a strong difference between AJ and non-AJ European control population samples (0.97 s.d. higher, pPeer reviewe
