49 research outputs found

    Detailed Structural Analysis of Lipids Directly on Tissue Specimens Using a MALDI-SpiralTOF-Reflectron TOF Mass Spectrometer

    Get PDF
    Direct tissue analysis using a novel tandem time-of-flight (TOF-TOF) mass spectrometer is described. This system consists of a matrix-assisted laser desorption/ionization ion source, a spiral ion trajectory TOF mass spectrometer “SpiralTOF (STOF)”, a collision cell, and an offset parabolic reflectron (RTOF). The features of this system are high precursor ion selectivity due to a 17-m flight path length in STOF and elimination of post-source decay (PSD) ions. The acceleration energy is 20 keV, so that high-energy collision-induced dissociation (HE-CID) is possible. Elimination of PSD ions allows observation of the product ions inherent to the HE-CID process. By using this tandem TOF instrument, the product ion spectrum of lipids provided detailed structural information of fatty acid residues

    Lipidomics: A Tool for Studies of Atherosclerosis

    Get PDF
    Lipids, abundant constituents of both the vascular plaque and lipoproteins, play a pivotal role in atherosclerosis. Mass spectrometry-based analysis of lipids, called lipidomics, presents a number of opportunities not only for understanding the cellular processes in health and disease but also in enabling personalized medicine. Lipidomics in its most advanced form is able to quantify hundreds of different molecular lipid species with various structural and functional roles. Unraveling this complexity will improve our understanding of diseases such as atherosclerosis at a level of detail not attainable with classical analytical methods. Improved patient selection, biomarkers for gauging treatment efficacy and safety, and translational models will be facilitated by the lipidomic deliverables. Importantly, lipid-based biomarkers and targets should lead the way as we progress toward more specialized therapeutics

    An Introduction to Sphingolipid Metabolism and Analysis by New Technologies

    Get PDF
    Sphingolipids (SP) are a complex class of molecules found in essentially all eukaryotes and some prokaryotes and viruses where they influence membrane structure, intracellular signaling, and interactions with the extracellular environment. Because of the combinatorial nature of their biosynthesis, there are thousands of SP subspecies varying in the lipid backbones and complex phospho- and glycoheadgroups. Therefore, comprehensive or “sphingolipidomic” analyses (structure-specific, quantitative analyses of all SP, or at least all members of a critical subset) are needed to know which and how much of these subspecies are present in a system as a step toward understanding their functions. Mass spectrometry and related novel techniques are able to quantify a small fraction, but nonetheless a substantial number, of SP and are beginning to provide information about their localization. This review summarizes the basic metabolism of SP and state-of-art mass spectrometric techniques that are producing insights into SP structure, metabolism, functions, and some of the dysfunctions of relevance to neuromedicine

    Increased throughput and ultra-high mass resolution in DESI FT-ICR MS imaging through new-generation external data acquisition system and advanced data processing approaches

    Get PDF
    Desorption electrospray ionisation-mass spectrometry imaging (DESI-MSI) is a powerful imaging technique for the analysis of complex surfaces. However, the often highly complex nature of biological samples is particularly challenging for MSI approaches, as options to appropriately address mass spectral complexity are limited. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers superior mass accuracy and mass resolving power, but its moderate throughput inhibits broader application. Here we demonstrate the dramatic gains in mass resolution and/or throughput of DESI-MSI on an FT-ICR MS by developing and implementing a sophisticated data acquisition and data processing pipeline. The presented pipeline integrates, for the first time, parallel ion accumulation and detection, post-processing absorption mode Fourier transform and pixel-by-pixel internal re-calibration. To achieve that, first, we developed and coupled an external high-performance data acquisition system to an FT-ICR MS instrument to record the time-domain signals (transients) in parallel with the instrument’s built-in electronics. The recorded transients were then processed by the in-house developed computationally-efficient data processing and data analysis software. Importantly, the described pipeline is shown to be applicable even to extremely large, up to 1 TB, imaging datasets. Overall, this approach provides improved analytical figures of merits such as: (i) enhanced mass resolution at no cost in experimental time; and (ii) up to 4-fold higher throughput while maintaining a constant mass resolution. Using this approach, we not only demonstrate the record 1 million mass resolution for lipid imaging from brain tissue, but explicitly demonstrate such mass resolution is required to resolve the complexity of the lipidome

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Forensic analysis of inks by imaging desorption electrospray ionization (DESI) mass spectrometry

    No full text
    Desorption electrospray ionization mass spectrometry (DESI-MS) is employed in the forensic analysis of documents. Blue ballpoint pen inks applied to ordinary writing paper are examined under ambient conditions without any prior sample preparation. When coupled to an automated moving stage, two-dimensional molecular images are generated. Proof-of-principle experiments include characterization of a simulated forged number and examination of older written records. This application of DESI has advantages over extractive techniques in terms of speed and sample preservation. The effects of the desorbing solvent composition, in this case a mixture of methanol and water, and of flow rate, are evaluated. Results suggest that the solubility of the analyte ( dyes Basic Blue 7, Basic Violet 3 and Solvent Blue 26) plays an important role in desorption from the paper surface.132546146
    corecore