484 research outputs found

    Multi-Bunch Instability Diagnostics via Digital Feedback Systems

    Get PDF
    Longitudinal feedback systems based on a common programmable DSP architecture have been commissioned at 4 laboratories. In addition to longitudinal feedback and beam diagnostics these exible systems have been programmed to provide diagnostics for tranverse motion. The diagnostic functions are based on transient domain techniques which record the response of every bunch while the feedback system manipulates the beam. Operational experience from 4 installations is illustrated via experimental results from PEP-II, DA NE, ALS and SPEAR. Modal growth and damping rates for transverse and longitudinal planes are measured via short (20 ms) transient excitations for unstable and stable coupled-bunch modes. Data from steady-state measurements are used to identify unstable modes, noise-driven beam motion, and noise sources. Techniques are illustrated which allow the prediction of instability thresholds from low-current measurements of stable beams. Tranverse bunch train grow-damp sequences which measure the time evolution of instabilities along the bunch train are presented and compared to signatures expected from ion and fast ion instabilities. Invited talk presented at the IEEE Particle Accelerator Conference (PAC99

    Multi-Bunch Longitudinal Dynamics and Diagnostics via a Digital

    Get PDF
    A bunch-by-bunch longitudinal feedback system based on a programmable DSP architecture is used to study coupled-bunch motion and its sources. Experimental results are presented from PEP-II, DA NE, ALS and SPEAR to highlight the operational experience from 4 installations, plus show novel accelerator diagnostics possible with the digital processing system. Modal growth and damping rates are measured via short ( 20 ms) transient recordings for unstable and stable coupled-bunch modes. Data from steady-state measurements are used to identify unstable modes and noise-driven beam motion. Anovel impedance measurement technique is presented which reveals the longitudinal impedance as a function of frequency. This technique uses the measured synchronous phase and charge of every bucket to calculate the impedance seen by the beam at revolution harmonics

    A generally applicable validation scheme for the assessment of factors involved in reproducibility and quality of DNA-microarray data

    Get PDF
    BACKGROUND: In research laboratories using DNA-microarrays, usually a number of researchers perform experiments, each generating possible sources of error. There is a need for a quick and robust method to assess data quality and sources of errors in DNA-microarray experiments. To this end, a novel and cost-effective validation scheme was devised, implemented, and employed. RESULTS: A number of validation experiments were performed on Lactococcus lactis IL1403 amplicon-based DNA-microarrays. Using the validation scheme and ANOVA, the factors contributing to the variance in normalized DNA-microarray data were estimated. Day-to-day as well as experimenter-dependent variances were shown to contribute strongly to the variance, while dye and culturing had a relatively modest contribution to the variance. CONCLUSION: Even in cases where 90 % of the data were kept for analysis and the experiments were performed under challenging conditions (e.g. on different days), the CV was at an acceptable 25 %. Clustering experiments showed that trends can be reliably detected also from genes with very low expression levels. The validation scheme thus allows determining conditions that could be improved to yield even higher DNA-microarray data quality

    The Escherichia coli transcriptome mostly consists of independently regulated modules

    Get PDF
    Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome

    Phosphoinositide-binding interface proteins involved in shaping cell membranes

    Get PDF
    The mechanism by which cell and cell membrane shapes are created has long been a subject of great interest. Among the phosphoinositide-binding proteins, a group of proteins that can change the shape of membranes, in addition to the phosphoinositide-binding ability, has been found. These proteins, which contain membrane-deforming domains such as the BAR, EFC/F-BAR, and the IMD/I-BAR domains, led to inward-invaginated tubes or outward protrusions of the membrane, resulting in a variety of membrane shapes. Furthermore, these proteins not only bind to phosphoinositide, but also to the N-WASP/WAVE complex and the actin polymerization machinery, which generates a driving force to shape the membranes

    Stationary Black Holes: Uniqueness and Beyond

    Get PDF
    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998. Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's authorship. Significantly restructured and updated all sections; changes are too numerous to be usefully described here. The number of references increased from 186 to 32

    Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains

    Get PDF
    The transfer of organic carbon from the terrestrial biosphere to the oceans via erosion and riverine transport constitutes an important component of the global carbon cycle. More than one third of this organic carbon flux comes from sediment-laden rivers that drain the mountains in the western Pacific region. This region is prone to tropical cyclones, but their role in sourcing and transferring vegetation and soil is not well constrained. Here we measure particulate organic carbon load and composition in the LiWu River, Taiwan, during cyclone-triggered floods. We correct for fossil particulate organic carbon using radiocarbon, and find that the concentration of particulate organic carbon from vegetation and soils is positively correlated with water discharge. Floods have been shown to carry large amounts of clastic sediment. Non-fossil particulate organic carbon transported at the same time may be buried offshore under high rates of sediment accumulation. We estimate that on decadal timescales, 77–92% of non-fossil particulate organic carbon eroded from the LiWu catchment is transported during large, cyclone-induced floods. We suggest that tropical cyclones, which affect many forested mountains within the Intertropical Convergence Zone, may provide optimum conditions for the delivery and burial of non-fossil particulate organic carbon in the ocean. This carbon transfer is moderated by the frequency, intensity and duration of tropical cyclones
    corecore