1,840 research outputs found

    High pressure magnetic state of MnP probed by means of muon-spin rotation

    Get PDF
    We report a detailed ÎŒ\muSR study of the pressure evolution of the magnetic order in the manganese based pnictide MnP, which has been recently found to undergo a superconducting transition under pressure once the magnetic ground state is suppressed. Using the muon as a volume sensitive local magnetic probe, we identify a ferromagnetic state as well as two incommensurate helical states (with propagation vectors Q{\bf Q} aligned along the crystallographic c−c- and b−b-directions, respectively) which transform into each other through first order phase transitions as a function of pressure and temperature. Our data appear to support that the magnetic state from which superconductivity develops at higher pressures is an incommensurate helical phase.Comment: 11 pages, 9 figure

    Soft x-rays absorption and high-resolution powder x-ray diffraction study of superconducting CaxLa(1-x)Ba(1.75-x)La(0.25+x)Cu3Oy system

    Full text link
    We have studied the electronic structure of unoccupied states measured by O K-edge and Cu L-edge x-ray absorption spectroscopy (XAS), combined with crystal structure studied by high resolution powder x-ray diffraction (HRPXRD), of charge-compensated layered superconducting CaxLa(1-x)Ba(1.75-x)La(0.25+x)Cu3Oy (0<x<0.4, 6.4<y<7.3) cuprate. A detailed analysis shows that, apart from hole doping, chemical pressure on the electronically active CuO2 plane due to the lattice mismatch with the spacer layers greatly influences the superconducting properties of this system. The results suggest chemical pressure to be the most plausible parameter to control the maximum critical temperatures (Tcmax) in different cuprate families at optimum hole density.Comment: 14 pages, 11 figures, accepted for publication in Journal of Physics and Chemistry of Solid

    Magnetic ground state and spin fluctuations in MnGe chiral magnet as studied by Muon Spin Rotation

    Get PDF
    We have studied by muon spin resonance ({\mu}SR) the helical ground state and fluctuating chiral phase recently observed in the MnGe chiral magnet. At low temperature, the muon polarization shows double period oscillations at short time scales. Their analysis, akin to that recently developed for MnSi [A. Amato et al., Phys. Rev. B 89, 184425 (2014)], provides an estimation of the field distribution induced by the Mn helical order at the muon site. The refined muon position agrees nicely with ab initio calculations. With increasing temperature, an inhomogeneous fluctuating chiral phase sets in, characterized by two well separated frequency ranges which coexist in the sample. Rapid and slow fluctuations, respectively associated with short range and long range ordered helices, coexist in a large temperature range below TN_{N} = 170 K. We discuss the results with respect to MnSi, taking the short helical period, metastable quenched state and peculiar band structure of MnGe into account.Comment: 13 pages, 11 figure

    Slow magnetic fluctuations and superconductivity in fluorine-doped NdFeAsO

    Get PDF
    Among the widely studied superconducting iron-pnictide compounds belonging to the Ln1111 family (with Ln a lanthanide), a systematic investigation of the crossover region between the superconducting and the antiferromagnetic phase for the Ln = Nd case has been missing. We fill this gap by focusing on the intermediate doping regime of NdFeAsO(1-x)F(x) by means of dc-magnetometry and muon-spin spectroscopy measurements. The long-range order we detect at low fluorine doping is replaced by short-range magnetic interactions at x = 0.08, where also superconductivity appears. In this case, longitudinal-field muon-spin spectroscopy experiments show clear evidence of slow magnetic fluctuations that disappear at low temperatures. This fluctuating component is ascribed to the glassy-like character of the magnetically ordered phase of NdFeAsO at intermediate fluorine doping

    Magnetic glassy phase in FeSeTe single crystals

    Full text link
    The evolution of the magnetic order in FeSeTe crystals as a function of Se content was investigated by means of ac/dc magnetometry and muon-spin spectroscopy. Experimental results and self-consistent DFT calculations both indicate that muons are implanted in vacant iron-excess sites, where they probe a local field mainly of dipolar origin, resulting from an antiferromagnetic (AFM) bicollinear arrangement of iron spins. This long-range AFM phase disorders progressively with increasing Se content. At the same time all the tested samples manifest a marked glassy character that vanishes for high Se contents. The presence of local electronic/compositional inhomogeneities most likely favours the growth of clusters whose magnetic moment "freezes" at low temperature. This glassy magnetic phase justifies both the coherent muon precession seen at short times in the asymmetry data, as well as the glassy behaviour evidenced by both dc and ac magnetometry.Comment: Approved for publication in J. Phys.: Condens. Matte

    Tuning of competing magnetic and superconducting phase volumes in LaFeAsO$_0.945F_0.055 by hydrostatic pressure

    Full text link
    The interplay between magnetism and superconductivity in LaFeAsO_0.945F_0.055 was studied as a function of hydrostatic pressure up to p~2.4GPa by means of muon-spin rotation (\muSR) and magnetization measurements. The application of pressure leads to a substantial decrease of the magnetic ordering temperature T_N and a reduction of the magnetic phase volume and, at the same time, to a strong increase of the superconducting transition temperature T_c and the diamagnetic susceptibility. From the volume sensitive \muSR measurements it can be concluded that the superconducting and the magnetic areas which coexist in the same sample are inclined towards spatial separation and compete for phase volume as a function of pressure.Comment: 4 pages, 4 figure

    Fast recovery of the stripe magnetic order by Mn/Fe substitution in F-doped LaFeAsO superconductors

    Full text link
    75^{75}As Nuclear Magnetic (NMR) and Quadrupolar (NQR) Resonance were used, together with M\"{o}ssbauer spectroscopy, to investigate the magnetic state induced by Mn for Fe substitutions in F-doped LaFe1−x_{1-x}Mnx_{x}AsO superconductors. The results show that 0.50.5% of Mn doping is enough to suppress the superconducting transition temperature TcT_c from 27 K to zero and to recover the magnetic structure observed in the parent undoped LaFeAsO. Also the tetragonal to orthorhombic transition of the parent compound is recovered by introducing Mn, as evidenced by a sharp drop of the NQR frequency. The NQR spectra also show that a charge localization process is at play in the system. Theoretical calculations using a realistic five-band model show that correlation-enhanced RKKY exchange interactions between nearby Mn ions stabilize the observed magnetic order, dominated by Q1=(π,0)Q_1=(\pi,0) and Q2=(0,π)Q_2=(0,\pi) ordering vectors. These results give compelling evidence that F-doped LaFeAsO is a strongly correlated electron system at the verge of an electronic instability.Comment: 5 pages, 5 figures and 4 pages of supplemental materia

    Experimental evidence of chemical-pressure-controlled superconductivity in cuprates

    Full text link
    X-ray absorption spectroscopy (XAS) and high resolution X-ray diffraction are combined to study the interplay between electronic and lattice structures in controlling the superconductivity in cuprates with a model charge-compensated CaxLa1-xBa1.75-xLa0.25+xCu3Oy (0<x<0.5, y=7.13) system. In spite of a large change in Tc, the doped holes, determined by the Cu L and O K XAS, hardly show any variation with the x. On the other hand, the CuO2 plaquette size shows a systematic change due to different size of substituted cations. The results provide a direct evidence for the chemical pressure being a key parameter for controlling the superconducting ground state of the cuprates.Comment: Accepted for publication in EP
    • 

    corecore