3,996 research outputs found
Void-mediated formation of Sn quantum dots in a Si matrix
Atomic scale analysis of Sn quantum dots (QDs) formed during the molecular beam-epitaxy (MBE) growth of Sn_xSi_(1−x) (0.05 ⩽ x ⩽ 0.1) multilayers in a Si matrix revealed a void-mediated formation mechanism. Voids below the Si surface are induced by the lattice mismatch strain between Sn_xSi_(1−x) layers and Si, taking on their equilibrium tetrakaidecahedron shape. The diffusion of Sn atoms into these voids leads to an initial rapid coarsening of quantum dots during annealing. Since this formation process is not restricted to Sn, a method to grow QDs may be developed by controlling the formation of voids and the diffusion of materials into these voids during MBE growth
Development of a chromium-thoria alloy
Low temperature ductility and high temperature strength of pure chromium and chromium-thoria alloy prepared from vapor deposited powder
The atomic structure of large-angle grain boundaries and in and their transport properties
We present the results of a computer simulation of the atomic structures of
large-angle symmetrical tilt grain boundaries (GBs) (misorientation
angles \q{36.87}{^{\circ}} and \q{53.13}{^{\circ}}),
(misorientation angles \q{22.62}{^{\circ}} and \q{67.38}{^{\circ}}). The
critical strain level criterion (phenomenological criterion)
of Chisholm and Pennycook is applied to the computer simulation data to
estimate the thickness of the nonsuperconducting layer enveloping
the grain boundaries. The is estimated also by a bond-valence-sum
analysis. We propose that the phenomenological criterion is caused by the
change of the bond lengths and valence of atoms in the GB structure on the
atomic level. The macro- and micro- approaches become consistent if the
is greater than in earlier papers. It is predicted that the
symmetrical tilt GB \theta = \q{53.13}{^{\circ}} should demonstrate
a largest critical current across the boundary.Comment: 10 pages, 2 figure
Recommended from our members
Interfaces and defects in opto-electronic semiconductor films studies by atomic resolution stem
The growth of thin films on dissimilar substrates is of great technological importance for modern optoelectronic devices. However, device applications are currently limited by lattice mismatches between the film and substrate that invariably lead to defects detrimental to device performance. It is therefore of key importance that the mechanisms leading to the formation of these defects are understood on the fundamental atomic level. Correlated atomic resolution Z-contrast imaging and EELS in the STEM is a unique methodology by which this information can be obtained. In this paper, the application of this methodology to determine a novel graphoepitaxial growth mechanism for CdTe on (001)Si is demonstrated, and its potential for the study of GaN is discussed
Direct observation of nm-scale Mg- and B-oxide phases at grain boundaries in MgB2
Here we describe the results of an atomic resolution study of the structure
and composition of both the interior of the grains, and the grain boundaries in
polycrystalline MgB2. We find that there is no oxygen within the bulk of the
grains but significant oxygen enrichment at the grain boundaries. The majority
of grain boundaries contain BOx phases smaller than the coherence length, while
others contain larger areas of MgO sandwiched between BOx layers. Such results
naturally explain the differences in connectivity between the grains observed
by other techniques
High Temperature Ferromagnetism with Giant Magnetic Moment in Transparent Co-doped SnO2-d
Occurrence of room temperature ferromagnetism is demonstrated in pulsed laser
deposited thin films of Sn1-xCoxO2-d (x<0.3). Interestingly, films of
Sn0.95Co0.05O2-d grown on R-plane sapphire not only exhibit ferromagnetism with
a Curie temperature close to 650 K, but also a giant magnetic moment of about 7
Bohr-Magneton/Co, not yet reported in any diluted magnetic semiconductor
system. The films are semiconducting and optically highly transparent.Comment: 12 pages, 4 figure
Phase Control and Fast Start-Up of a Magnetron Using Modulation of an Addressable Faceted Cathode
The use of an addressable, faceted cathode has been proposed as a method of modulating current injection in a magnetron to improve performance and control phase. To implement the controllable electron emission, five-sided and ten-sided faceted planar cathodes employing gated field emitters are considered as these emitters could be fabricated on flat substrates. For demonstration, the conformal finite-difference time-domain particle-in-cell simulation, as implemented in VORPAL, has been used to model a ten-cavity, rising sun magnetron using the modulated current sources and benchmarked against a typical continuous current source. For the modulated, ten-sided faceted cathode case, the electrons are injected from three emitter elements on each of the ten facets. Each emitter is turned ON and OFF in sequence at the oscillating frequency with five emitters ON at one time to drive the five electron spokes of the π-mode. The emitter duty cycle is then 1/6th the Radio-Frequency (RF) period. Simulations show a fast start-up time as low as 35 ns for the modulated case compared to 100 ns for the continuous current cases. Analysis of the RF phase using the electron spoke locations and the RF magnetic field components shows that the phase is controlled for the modulated case while it is random, as typical, for the continuous current case. Active phase control during oscillation was demonstrated by shifting the phase of the electron injection 180° after oscillations started. The 180° phase shift time was approximately 25 RF cycles
Recommended from our members
Lunar elemental composition and ivestigations with D-CIXS x-ray mapping spectrometer on SMART-1
The D-CIXS Compact X-ray Spectrometer on ESA SMART-1 successfully launched in Sept 2003 can derive 45 km resolution images of the Moon with a spectral resolution of 185 eV, providing the first high-resolution global map of rock forming element abundances
- …