856 research outputs found

    3-D Magnetic field analysis by using special elements

    Get PDF
    Three-dimensional special elements, called the gap element, the expanding element, and the shielding element, have been conceived for discretizing narrow gaps in an iron core, the long legs of a transformer core, and thin shielding plates. The concept of the 3D special element and its finite-element formulation are described. The special elements are applied to several models, and the effects of the elements on accuracy and CPU time are discussed. It is shown that CPU time can be reduced by using the special elements</p

    Comparison of different finite elements for 3-D eddy current analysis

    Get PDF
    In order to evaluate the best type of element for the finite-element analysis of 3-D eddy currents, a fundamental model is analyzed using the usual first-order tetrahedral, triangular prism, and brick nodal elements, and also the brick edge element. The effects of the types of elements on the flux and eddy-current distributions are investigated using the A-&#966; method and the T-&#937; method. It is concluded that the brick edge element is best from the viewpoints of accuracy and CPU time</p

    Heavy-Mass Behavior of Ordered Perovskites ACu3Ru4O12 (A = Na, Ca, La)

    Full text link
    We synthesized ACu3Ru4O12 (A = Na, Na0.5Ca0.5, Ca, Ca0.5La0.5, La) and measured their DC magnetization, AC susceptibility, specific heat, and resistivity, in order to investigate the effects of the hetero-valent substitution. A broad peak in the DC magnetization around 200 K was observed only in CaCu3Ru4O12, suggesting the Kondo effect due to localized Cu2+ ions. However, the electronic specific heat coefficients exhibit large values not only for CaCu3Ru4O12 but also for all the other samples. Moreover, the Wilson ratio and the Kadowaki-Woods ratio of our samples are all similar to the values of other heavy-fermion compounds. These results question the Kondo effect as the dominant origin of the mass enhancement, and rather indicate the importance of correlations among itinerant Ru electrons.Comment: 6 pages, 6 figures, to be published in J. Phys. Soc. Jp

    Use of Ar pellet ablation rate to estimate initial runaway electron seed population in DIII-D rapid shutdown experiments

    Get PDF
    Small (2-3 mm, 0.9-2 Pa • m3) argon pellets are used in the DIII-D tokamak to cause rapid shutdown (disruption) of discharges. The Ar pellet ablation is typically found to be much larger than expected from the thermal plasma electron temperature alone; the additional ablation is interpreted as being due to non-thermal runaway electrons (REs) formed during the pellet-induced temperature collapse. Simple estimates of the RE seed current using the enhanced ablation rate give values of order 1-10 kA, roughly consistent with estimates based on avalanche theory. Analytic estimates of the RE seed current based on the Dreicer formula tend to significantly underestimate it, while estimates based on the hot tail model significantly overestimate it

    Estimate of pre-thermal quench non-thermal electron density profile during Ar pellet shutdowns of low-density target plasmas in DIII-D

    Get PDF
    The radial density profile of pre-thermal quench (pre-TQ) early-time non-thermal (hot) electrons is estimated by combining electron cyclotron emission and soft x-ray data during the rapid shutdown of low-density (ne≲1019m−3) DIII-D target plasmas with cryogenic argon pellet injection. This technique is mostly limited in these experiments to the pre-TQ phase and quickly loses validity during the TQ. Two different cases are studied: a high (10 keV) temperature target and a low (4 keV) temperature target. The results indicate that early-time, low-energy (∼10 keV) hot electrons form ahead of the argon pellet as it enters the plasma, affecting the pellet ablation rate; it is hypothesized that this may be caused by rapid cross field transport of argon ions ahead of the pellet or by rapid cross field transport of hot electrons. Fokker-Planck modeling of the two shots suggests that the hot electron current is quite significant during the pre-TQ phase (up to 50% of the total current). Comparison between modeled pre-TQ hot electron current and post-TQ hot electron current inferred from avalanche theory suggests that hot electron current increases during the high-temperature target TQ but decreases during the low-temperature target TQ. The uncertainties in this estimate are large; however, if true, this suggests that TQ radial loss of hot electron current could be larger than previously estimated in DIII-D

    1.14Tb/s DP-QPSK WDM polarization-diverse optical phase conjugation

    Get PDF
    Optical phase conjugation (OPC) of a polarization-multiplexed comb of 10x114Gb/s DP-QPSK signals has been demonstrated for the first time, occupying a spectral bandwidth of >1THz (~9nm). The nonlinear element employed for the OPC was highly nonlinear fiber (HNLF) optimized for the suppression of stimulated Brillouin scattering (SBS) and configured in a bi-directional loop offering polarization diversity. Pump power (each way about the loop) and input signal power to the OPC subsystem were optimized at 29.7dBm and + 3dBm respectively producing a Q2 penalty of ≤0.9dB over all conjugate wavelengths, polarizations and output OSNR (up to 20dB)

    Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks

    Get PDF
    Novel spatial, temporal, and energetically resolved measurements of bremsstrahlung hard-x-ray (HXR) emission from runaway electron (RE) populations in tokamaks reveal nonmonotonic RE distribution functions whose properties depend on the interplay of electric field acceleration with collisional and synchrotron damping. Measurements are consistent with theoretical predictions of momentum-space attractors that accumulate runaway electrons. RE distribution functions are measured to shift to a higher energy when the synchrotron force is reduced by decreasing the toroidal magnetic field strength. Increasing the collisional damping by increasing the electron density (at a fixed magnetic and electric field) reduces the energy of the nonmonotonic feature and reduces the HXR growth rate at all energies. Higher-energy HXR growth rates extrapolate to zero at the expected threshold electric field for RE sustainment, while low-energy REs are anomalously lost. The compilation of HXR emission from different sight lines into the plasma yields energy and pitch-angle-resolved RE distributions and demonstrates increasing pitch-angle and radial gradients with energy.United States. Department of Energy (DE-FC02-04ER54698)United States. Department of Energy (DE-FG02-07ER54917)United States. Department of Energy (DE-AC05-00OR22725)United States. Department of Energy (DE-FC02-99ER54512)United States. Department of Energy (DE-SC0016268
    • …
    corecore