2,631 research outputs found

    Strange Multiskyrmions

    Get PDF
    Using the recently proposed approximation for multiskyrmion fields based on rational maps we study the masses and baryonic radii of some strange multibaryons within the bound state soliton model. We find the tetralambda binding to be stronger than previously expected. In addition, the model predicts the existence of a ``heptalambda'' which is stable against strong decays.Comment: 8 pages, Latex, no figure

    Propositional Encoding of Constraints over Tree-Shaped Data

    Full text link
    We present a functional programming language for specifying constraints over tree-shaped data. The language allows for Haskell-like algebraic data types and pattern matching. Our constraint compiler CO4 translates these programs into satisfiability problems in propositional logic. We present an application from the area of automated analysis of (non-)termination of rewrite systems

    Scaling and energy transfer in rotating turbulence

    Get PDF
    The inertial-range properties of quasi-stationary hydrodynamic turbulence under solid-body rotation are studied via high-resolution direct numerical simulations. For strong rotation the nonlinear energy cascade exhibits depletion and a pronounced anisotropy with the energy flux proceeding mainly perpendicularly to the rotation axis. This corresponds to a transition towards a quasi-two-dimensional flow similar to a linear Taylor-Proudman state. In contrast to the energy spectrum along the rotation axis which does not scale self-similarly, the perpendicular spectrum displays an inertial range with k⊄−2k^{-2}_\perp-behavior. A new phenomenology gives a rationale for the observations. The scaling exponents ζp\zeta_p of structure functions up to order p=8p=8 measured perpendicular to the rotation axis indicate reduced intermittency with increasing rotation rate. The proposed phenomenology is consistent with the inferred asymptotic non-intermittent behavior ζp=p/2\zeta_p=p/2.Comment: to be published in Europhysics Letters (www.epletters.net), minor changes to match version in prin

    Numerical simulation of 3-D flow around sounding rocket in the lower thermosphere

    Get PDF
    International audienceNumerical simulations using the Direct Simulation Monte Carlo (DSMC) method are known to be useful for analyses of aerodynamic effects on in-situ rocket measurements in the lower thermosphere, but the DSMC analysis of a spin modulation caused by an asymmetric flow around the rocket spin axis has been restricted to the two-dimensional and axially symmetric simulations in actual sounding rocket experiments. This study provides a quantitative analysis of the spin modulation using a three-dimensional (3-D) simulation of the asymmetric flow with the DSMC method. Clear spin modulations in the lower thermospheric N2 density measurement by a rocket-borne instrument are simulated using the rocket attitude and velocity, the simplified payload structure, and the approximated atmospheric conditions. Comparison between the observed and simulated spin modulations show a very good agreement within 5% at around 100km. The results of the simulation are used to correct the spin modulations and derive the absolute densities in the background atmosphere

    Temperature dependence of infrared reflectance spectra of InN

    Get PDF
    To investigate both the optical and electrical properties of InN, we have measured the infrared reflectance spectra of InN thin films and performed the fitting analyses of the infrared spectra to obtain not only phonon frequencies and the damping factors but also the carrier concentration of InN. In this paper, we extend the aim of those analyses to the electron mobility and demonstrate that the temperature dependence of the electron mobility can be discussed using the infrared reflectance spectra analyses

    The scaling properties of dissipation in incompressible isotropic three-dimensional magnetohydrodynamic turbulence

    Full text link
    The statistical properties of the dissipation process constrain the analysis of large scale numerical simulations of three dimensional incompressible magnetohydrodynamic (MHD) turbulence, such as those of Biskamp and Muller [Phys. Plasmas 7, 4889 (2000)]. The structure functions of the turbulent flow are expected to display statistical self-similarity, but the relatively low Reynolds numbers attainable by direct numerical simulation, combined with the finite size of the system, make this difficult to measure directly. However, it is known that extended self-similarity, which constrains the ratio of scaling exponents of structure functions of different orders, is well satisfied. This implies the extension of physical scaling arguments beyond the inertial range into the dissipation range. The present work focuses on the scaling properties of the dissipation process itself. This provides an important consistency check in that we find that the ratio of dissipation structure function exponents is that predicted by the She and Leveque [Phys. Rev. Lett 72, 336 (1994)] theory proposed by Biskamp and Muller. This supplies further evidence that the cascade mechanism in three dimensional MHD turbulence is non-linear random eddy scrambling, with the level of intermittency determined by dissipation through the formation of current sheets.Comment: 9 pages, 6 figures. Figures embedded in text. Typos corrected in text and references. Published in Physics of Plasmas. Abstract can be found at:http://link.aip.org/link/?php/12/02230

    Josephson π\pi-state in superconductor-Luttinger liquid hybrid systems

    Full text link
    Josephson current through a Luttinger liquid (LL) under a magnetic field is theoretically studied. We derive an analytical expression of Josephson current for clean interfaces, by using quasiclassical Green's function and functional bosonization procedure. We show that critical currents can be renormalized by electron-electron interactions at perfect transparency when LL is adiabatically connected with superconductors. We also find that a generation of π\pi-state, due to spin-dependent energy shift in Andreev bound states (ABS), is prohibited even at zero temperature when the strength of repulsive interactions reaches some critical value. The suppression of π\pi-state is caused by the low energy fluctuations propagating in LL, and making the Zeeman splitting in ABS blurred.Comment: 5 pages, 4figure

    Automatic Computation of Cross Sections in HEP

    Get PDF
    For the study of reactions in High Energy Physics (HEP) automatic computation systems have been developed and are widely used nowadays. GRACE is one of such systems and it has achieved much success in analyzing experimental data. Since we deal with the cross section whose value can be given by calculating hundreds of Feynman diagrams, we manage the large scale calculation, so that effective symbolic manipulation, the treat of singularity in the numerical integration are required. The talk will describe the software design of GRACE system and computational techniques in the GRACE.Comment: 6 pages, Latex, ICCP
    • 

    corecore