342 research outputs found
Phase diagram of fluid phases in He -He mixtures
Fluid parts of the phase diagram of He -He mixtures are obtained
from a mean-field analysis of a suitable lattice gas model for binary liquid
mixtures. The proposed model takes into account the continuous rotational
symmetry O(2) of the superfluid degrees of freedom associated with He and
includes the occurrence of vacancies. This latter degree of freedom allows the
model to exhibit a vapor phase and hence can provide the theoretical framework
to describe the experimental conditions for measurements of tricritical Casimir
forces in He -He wetting films
Risks and Benefits of Using a Commercially Available Ventricular Assist Device for Failing Fontan Cavopulmonary Support: A Modeling Investigation
Fontan patients often develop circulatory failure and are in desperate need of a therapeutic solution. A blood pump surgically placed in the cavopulmonary pathway can substitute the function of the absent sub-pulmonary ventricle by generating a mild pressure boost. However, there is currently no commercially available device designed for the cavopulmonary application; and the risks and benefits of implanting a ventricular assist device (VAD), originally designed for the left ventricular application, on the right circulation of failing Fontan patients is not yet clear. Moreover, further research is needed to compare the hemodynamics between the two clinically-considered surgical configurations for cavopulmonary assist, with Full and inferior vena cava (IVC) support corresponding to the entire venous return or only the inferior venous return, respectively, being routed through the VAD. In this study, we used a numerical model of the failing Fontan physiology to evaluate the Fontan hemodynamic response to a left VAD during the IVC and Full support scenarios. We observed that during Full support, the VAD improved the cardiac output while maintaining blood pressures within safe ranges, and lowered the IVC pressure to \u3c15 mmHg; however, we found a potential risk of lung damage at higher pump speeds due to the excessive pulmonary pressure elevation. IVC support, on the other hand, did not benefit the hemodynamics in the patient cases simulated, resulting in the superior vena cava pressure increasing to an unsafe level of \u3e20 mmHg. The findings in this study may be helpful to surgeons for recognizing the risks of a cavopulmonary VAD and developing coherent clinical strategies for the implementation of cavopulmonary support
Risks and Benefits of Using a Commercially Available Ventricular Assist Device for Failing Fontan Cavopulmonary Support: A Modeling Investigation
Fontan patients often develop circulatory failure and are in desperate need
of a therapeutic solution. A blood pump surgically placed in the cavopulmonary
pathway can substitute the function of the absent sub-pulmonary ventricle by
generating a mild pressure boost. However, there is currently no commercially
available device designed for the cavopulmonary application; and the risks and
benefits of implanting a ventricular assist device (VAD) originally designed
for the left ventricular application on the right circulation of failing Fontan
patients is not yet clear. Moreover, further research is needed to compare the
hemodynamics between the two clinically-considered surgical configurations
(Full Support and IVC Support) for cavopulmonary assist, with Full and IVC
Support corresponding to the entire venous return or only the inferior venous
return, respectively, being routed through the VAD. In this study, we used a
numerical model of the failing Fontan physiology to evaluate the Fontan
hemodynamic response to a left VAD during the IVC and Full supports. We
observed that during the Full support the VAD improved the cardiac output while
maintaining blood pressures within safe ranges, and lowered the IVC pressure to
<15mmHg; however, we found a potential risk of lung damage at higher pump
speeds due to the excessive pulmonary pressure elevation. IVC support the other
hand, did not benefit the hemodynamics of the example failing Fontan patients,
resulting in the superior vena cava pressure increasing to an unsafe level of
>20 mmHg. The findings in this study may be helpful to surgeons for recognizing
the risks of a cavopulmonary VAD and developing coherent clinical strategies
for the implementation of cavopulmonary support
Statistics of the Number of Zero Crossings : from Random Polynomials to Diffusion Equation
We consider a class of real random polynomials, indexed by an integer d, of
large degree n and focus on the number of real roots of such random
polynomials. The probability that such polynomials have no real root in the
interval [0,1] decays as a power law n^{-\theta(d)} where \theta(d)>0 is the
exponent associated to the decay of the persistence probability for the
diffusion equation with random initial conditions in space dimension d. For n
even, the probability that such polynomials have no root on the full real axis
decays as n^{-2(\theta(d) + \theta(2))}. For d=1, this connection allows for a
physical realization of real random polynomials. We further show that the
probability that such polynomials have exactly k real roots in [0,1] has an
unusual scaling form given by n^{-\tilde \phi(k/\log n)} where \tilde \phi(x)
is a universal large deviation function.Comment: 4 pages, 3 figures. Minor changes. Accepted version in Phys. Rev.
Let
Target Flow-Pressure Operating Range for Designing a Failing Fontan Cavopulmonary Support Device
Fontan operation as the current standard of care for the palliation of single ventricle defects results in significant late complications. Using a mechanical circulatory device for the right circulation to serve the function of the missing subpulmonary ventricle could potentially stabilize the failing Fontan circulation. This study aims to elucidate the hydraulic operating regions that should be targeted for designing cavopulmonary blood pumps. By integrating numerical analysis and available clinical information, the interaction of the cavopulmonary support via the IVC and full assist configurations with a wide range of simulated adult failing scenarios was investigated; with IVC and full assist corresponding to the inferior venous return or the entire venous return, respectively, being routed through the device. We identified the desired hydraulic operating regions for a cavopulmonary assist device by clustering all head pressures and corresponding pump flows that result in hemodynamic improvement for each simulated failing Fontan physiology. Results show that IVC support can produce beneficial hemodynamics in only a small fraction of failing Fontan scenarios. Cavopulmonary assist device could increase cardiac index by 35% and decrease the inferior vena cava pressure by 45% depending on the patient\u27s pre-support hemodynamic state and surgical configuration of the cavopulmonary assist device (IVC or full support). The desired flow-pressure operating regions we identified can serve as the performance criteria for designing cavopulmonary assist devices as well as evaluating off-label use of commercially available left-side blood pumps for failing Fontan cavopulmonary support
Inter-domain traffic routing in vehicular delay tolerant networks
“Copyright © [2010] IEEE. Reprinted from IEEE International Conference on Communications (IEEE ICC 2010). ISSN:1550-3607. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”In this paper, we consider the problem of dynamic inter-domain traffic routing between a VDTN and a non-DTN (e.g., Internet). The inter-domain traffic can be classified as inbound and outbound traffic. Our main contribution in this work is the intro- duction of several fault-tolerant routing algorithms for inbound and outbound traffic. Using simulations, we compare the performance of the proposed algorithms in terms of required resources, packet delivery time, and blocking probability.This work was supported in part by the Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), Covilhã Delegation, Portugal in the framework of the VDTN@Lab Project
Condensation of the roots of real random polynomials on the real axis
We introduce a family of real random polynomials of degree n whose
coefficients a_k are symmetric independent Gaussian variables with variance
= e^{-k^\alpha}, indexed by a real \alpha \geq 0. We compute exactly
the mean number of real roots for large n. As \alpha is varied, one finds
three different phases. First, for 0 \leq \alpha \sim
(\frac{2}{\pi}) \log{n}. For 1 < \alpha < 2, there is an intermediate phase
where grows algebraically with a continuously varying exponent,
\sim \frac{2}{\pi} \sqrt{\frac{\alpha-1}{\alpha}} n^{\alpha/2}. And finally for
\alpha > 2, one finds a third phase where \sim n. This family of real
random polynomials thus exhibits a condensation of their roots on the real line
in the sense that, for large n, a finite fraction of their roots /n are
real. This condensation occurs via a localization of the real roots around the
values \pm \exp{[\frac{\alpha}{2}(k+{1/2})^{\alpha-1} ]}, 1 \ll k \leq n.Comment: 13 pages, 2 figure
Traffic differentiation support in vehicular delay-tolerant networks
Vehicular Delay-Tolerant Networking (VDTN) is a Delay-Tolerant Network (DTN) based architecture concept for transit networks, where vehicles movement and their bundle relaying service is opportunistically exploited to enable non-real time applications, under environments prone to connectivity disruptions, network partitions and potentially long delays. In VDTNs, network resources may be limited, for instance due to physical constraints of the network nodes. In order to be able to prioritize applications traffic according to its requirements in such constrained scenarios, traffic differentiation mechanisms must be introduced at the VDTN architecture. This work considers a priority classes of service (CoS) model and investigates how different buffer management strategies can be combined with drop and scheduling policies, to provide strict priority based services, or to provide custom allocation of network resources. The efficiency and tradeoffs of these proposals is evaluated through extensive simulation.Part of this work has been supported by Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), Portugal, in the framework of the Project VDTN@Lab, and by the Euro-NF Network of Excellence of the Seventh Framework Programme of EU
- …