656 research outputs found
Numerical aeroacoustic analysis of propeller designs
As propeller-driven aircraft are the best choice for short/middle-haul flights but their acoustic emissions may require improvements to comply with future noise certification standards, this work aims to numerically evaluate the acoustics of different modern propeller designs. Overall sound pressure level and noise spectra of various blade geometries and hub configurations are compared on a surface representing the exterior fuselage of a typical large turboprop aircraft. Interior cabin noise is also evaluated using the transfer function of a Fokker 50 aircraft. A blade design operating at lower RPM and with the span-wise loading moved inboard is shown to be significantly quieter without severe performance penalties. The employed Computational Fluid Dynamics (CFD) method is able to reproduce the tonal content of all blades and its dependence on hub and blade design features
Numerical modelling of the aerodynamic interference between helicopter and ground obstacles
Helicopters are frequently operating in confined areas where the complex flow fields that develop in windy conditions may result in dangerous situations. Tools to analyse the interaction between rotorcraft wakes and ground obstacles are therefore essential. This work, carried out within the activity of the GARTEUR Action Group 22 on “Forces on Obstacles in Rotor Wake”, attempts to assess numerical models for this problem. In particular, a helicopter operating in hover above a building as well as in its wake, one main rotor diameter above the ground, has been analysed. Recent tests conducted at Politecnico di Milano provide a basis for comparison with unsteady simulations performed, with and without wind. The helicopter rotor has been modelled using steady and unsteady actuator disk methods, as well as with fully resolved blade simulations. The results identify the most efficient aerodynamic model that captures the wakes interaction, so that real-time coupled simulations can be made possible. Previous studies have already proved that the wake superposition technique cannot guarantee accurate results if the helicopter is close to the obstacle. The validity of that conclusion has been further investigated in this work to determine the minimum distance between helicopter and building at which minimal wake interference occurs
Why genes overlap in viruses
The genomes of most virus species have overlapping genes\u2014two or more proteins coded for by the same nucleotide sequence. Several explanations have been proposed for the evolution of this phenomenon, and we test these by comparing the amount of gene overlap in all known virus species. We conclude that gene overlap is unlikely to have evolved as a way of compressing the genome in response to the harmful effect of mutation because RNA viruses, despite having generally higher mutation rates, have less gene overlap on average than DNA viruses of comparable genome length. However, we do find a negative relationship between overlap proportion and genome length among viruses with icosahedral capsids, but not among those with other capsid types that we consider easier to enlarge in size. Our interpretation is that a physical constraint on genome length by the capsid has led to gene overlap evolving as a mechanism for producing more proteins from the same genome length. We consider that these patterns cannot be explained by other factors, namely the possible roles of overlap in transcription regulation, generating more divergent proteins and the relationship between gene length and genome length
Predicting the bioconcentration factor in fish from molecular structures
The bioconcentration factor (BCF) is one of the metrics used to evaluate the potential of a substance to bioaccumulate into aquatic organisms. In this work, linear and non-linear regression QSARs were developed for the prediction of log BCF using different computational approaches, and starting from a large and structurally heterogeneous dataset. The new MLR-OLS and ANN regression models have good fitting with R-2 values of 0.62 and 0.70, respectively, and comparable external predictivity with R-ext(2) 0.64 and 0.65 (RMSEext of 0.78 and 0.76), respectively. Furthermore, linear and non-linear classification models were developed using the regulatory threshold BCF >2000. A class balanced subset was used to develop classification models which were applied to chemicals not used to create the QSARs. These classification models are characterized by external and internal accuracy up to 84% and 90%, respectively, and sensitivity and specificity up to 90% and 80%, respectively. QSARs presented in this work are validated according to regulatory requirements and their quality is in line with other tools available for the same endpoint and dataset, with the advantage of low complexity and easy application through the software QSAR-ME Profiler. These QSARs can be used as alternatives for, or in combination with, existing models to support bioaccumulation assessment procedures
Parameterization of a bucket model for soil-vegetation-atmosphere modeling under seasonal climatic regimes
We investigate the potential impact of accounting for seasonal variations in the climatic forcing and using different methods to parameterize the soil water content at field capacity on the water balance components computed by a bucket model (BM). The single-layer BM of Guswa et al. (2002) is employed, whereas the Richards equation (RE) based Soil Water Atmosphere Plant (SWAP) model is used as a benchmark model. The results are analyzed for two differently-textured soils and for some synthetic runs under real-like seasonal weather conditions, using stochastically-generated daily rainfall data for a period of 100 years. Since transient soil-moisture dynamics and climatic seasonality play a key role in certain zones of the World, such as in Mediterranean land areas, a specific feature of this study is to test the prediction capability of the bucket model under a condition where seasonal variations in rainfall are not in phase with the variations in plant transpiration. Reference is made to a hydrologic year in which we have a rainy period (starting 1 November and lasting 151 days) where vegetation is basically assumed in a dormant stage, followed by a drier and rainless period with a vegetation regrowth phase. Better agreement between BM and RE-SWAP intercomparison results are obtained when BM is parameterized by a field capacity value determined through the drainage method proposed by Romano and Santini (2002). Depending on the vegetation regrowth or dormant seasons, rainfall variability within a season results in transpiration regimes and soil moisture fluctuations with distinctive features. During the vegetation regrowth season, transpiration exerts a key control on soil water budget with respect to rainfall. During the dormant season of vegetation, the precipitation regime becomes an important climate forcing. Simulations also highlight the occurrence of bimodality in the probability distribution of soil moisture during the season when plants are dormant, reflecting that soil, it being of coarser or finer texture, can be preferentially in either wetter or drier states over this period
Kalman filters for assimilating near-surface observations into the Richards equation – Part 3: Retrieving states and parameters from laboratory evaporation experiments
Abstract. The purpose of this work is to evaluate the performance of a dual Kalman filter procedure in retrieving states and parameters of a one-dimensional soil water budget model based on the Richards equation, by assimilating near-surface soil water content values during evaporation experiments carried out under laboratory conditions. The experimental data set consists of simultaneously measured evaporation rates, soil water content and matric potential profiles. The parameters identified by assimilating the data measured at 1 and 2 cm soil depths are in very good agreement with those obtained by exploiting the observations carried out in the entire soil profiles. A reasonably good correspondence has been found between the parameter values obtained from the proposed assimilation technique and those identified by applying a non-sequential parameter estimation method. The dual Kalman filter also performs well in retrieving the water state in the porous system. Bias and accuracy of the predicted state profiles are affected by observation depth changes, particularly for the experiments involving low state vertical gradients. The assimilation procedure proved flexible and very stable in both experimental cases, independently from the selected initial conditions and the involved uncertainty
Computational Aeroacoustic Analysis of Propeller Installation Effects
In line with the goal of cleaner and quieter aircraft, this paper investigates propeller acoustics aiming to improve turboprops
noise emissions, as they represent the best choice for short and medium range flights in terms of fuel efficiency. CFD is
used to analyse the propeller-airframe interaction physics, and assess propeller installation effects, for a full scale twinengined
aircraft. The employed propellers represent advanced designs currently used in modern aircraft and the cases
of co-rotating and counter-rotating top-in layout are considered. The URANS approach is used on grids of up to 195 M
points aiming to directly extract from CFD the noise tonal content. Numerical results are first validated against modelscaled
experimental data. A comparison between results of the full aircraft and a propeller in isolation is also carried out.
Full aircraft predictions show significant differences in the external acoustics between port and starboard sides for the
co-rotating case, with a louder noise generated by the inboard-up propeller. The counter-rotating layout shows a more
regular distribution of overall noise, with on average slightly higher noise levels towards the front and the rear of the
cabin. Acoustic predictions from an isolated propeller in axial flight significantly underestimate noise levels even on the
fuselage sides where the aircraft masks the other propeller, showing the relevance of the propeller-airframe interactions in
the evaluation of actual sound pressure levels in flight
Propeller installation effects on turboprop acoustics
Propeller installation options for a twin-engined turboprop aircraft are evaluated at cruise conditions, aiming to identify the quieter configuration. Computational fluid dynamics is used to investigate the near-field acoustics and transfer functions are employed to estimate the interior cabin noise. Co-rotating and counter-rotating installation options are compared. The effect of propeller synchrophasing is also considered. The employed method captures the complexity of the acoustic field generated by the interactions of the propeller sound fields among each other and with the airframe, showing also the importance of simulating the whole problem to predict the actual noise on a flying aircraft. Marked differences among the various layouts are observed. The counter-rotating top-in option appears the best in terms of acoustics, the top-out propeller rotation leading to louder noise because of inflow conditions and the occurrence of constructive acoustic interferences. Synchrophasing is shown to be beneficial for co-rotating propellers, specially regarding the interior noise, because of favorable effects in the interaction between the propeller direct sound field and the noise due to the airframe. An angle closer to the maximum relative blade shift was found to be the best choice, yielding, however, higher sound levels than those provided by the counter-rotating top-in layout
- …