4,886 research outputs found

    Entanglement creation and distribution on a graph of exchange-coupled qutrits

    Full text link
    We propose a protocol that allows both the creation and distribution of entanglement, resulting in two distant parties (Alice and Bob) conclusively sharing a bipartite Bell State. The system considered is a graph of three-level objects ("qutrits") coupled by SU(3) exchange operators. The protocol begins with a third party (Charlie) encoding two lattice sites in unentangled states, and allowing unitary evolution under time. Alice and Bob perform a projective measurement on their respective qutrits at a given time, and obtain a maximally-entangled Bell state with a certain probablility. We also consider two further protocols, one based on simple repetition and the other based on successive measurements and conditional resetting, and show that the cumulative probability of creating a Bell state between Alice and Bob tends to unity.Comment: Added seven references, clarified argument for eqn (16

    Effect of inhomogeneities on the expansion rate of the Universe

    Full text link
    While the expansion rate of a homogeneous isotropic Universe is simply proportional to the square-root of the energy density, the expansion rate of an inhomogeneous Universe also depends on the nature of the density inhomogeneities. In this paper we calculate to second order in perturbation variables the expansion rate of an inhomogeneous Universe and demonstrate corrections to the evolution of the expansion rate. While we find that the mean correction is small, the variance of the correction on the scale of the Hubble radius is sensitive to the physical significance of the unknown spectrum of density perturbations beyond the Hubble radius.Comment: 19 pages, 2 figures Version 2 includes some changes in numerical factors and corrected typos. It is the version accepted for publication in Physical review

    Topics in Cubic Special Geometry

    Full text link
    We reconsider the sub-leading quantum perturbative corrections to N=2 cubic special Kaehler geometries. Imposing the invariance under axion-shifts, all such corrections (but the imaginary constant one) can be introduced or removed through suitable, lower unitriangular symplectic transformations, dubbed Peccei-Quinn (PQ) transformations. Since PQ transformations do not belong to the d=4 U-duality group G4, in symmetric cases they generally have a non-trivial action on the unique quartic invariant polynomial I4 of the charge representation R of G4. This leads to interesting phenomena in relation to theory of extremal black hole attractors; namely, the possibility to make transitions between different charge orbits of R, with corresponding change of the supersymmetry properties of the supported attractor solutions. Furthermore, a suitable action of PQ transformations can also set I4 to zero, or vice versa it can generate a non-vanishing I4: this corresponds to transitions between "large" and "small" charge orbits, which we classify in some detail within the "special coordinates" symplectic frame. Finally, after a brief account of the action of PQ transformations on the recently established correspondence between Cayley's hyperdeterminant and elliptic curves, we derive an equivalent, alternative expression of I4, with relevant application to black hole entropy.Comment: 1+39 page

    Entanglement recovery in noisy binary quantum information protocols via three-qubit quantum error correction codes

    Full text link
    The task of preserving entanglement against noises is of crucial importance for both quantum communication and quantum information transfer. To this aim, quantum error correction (QEC) codes may be employed to compensate, at least partially, the detriments induced by environmental noise that can be modelled as a bit-flip or a phase-flip error channel. In this paper we investigate the effects of the simple three-qubit QEC codes to restore entanglement and nonlocality in a two-qubit system and consider two practical applications: superdense coding and quantum teleportation. Though the considered three-qubit QEC codes are known to perfectly work in the presence of very small noise, we show that they can avoid the sudden death of entanglement and improve the performance of the addressed protocols also for larger noise amplitudes.Comment: 14 pages, 7 figure

    Some new well-posedness results for continuity and transport equations, and applications to the chromatography system

    Full text link
    We obtain various new well-posedness results for continuity and transport equations, among them an existence and uniqueness theorem (in the class of strongly continuous solutions) in the case of nearly incompressible vector fields, possibly having a blow-up of the BV norm at the initial time. We apply these results (valid in any space dimension) to the k x k chromatography system of conservation laws and to the k x k Keyfitz and Kranzer system, both in one space dimension.Comment: 33 pages, minor change

    Quantifying the Reversible Association of Thermosensitive Nanoparticles

    Get PDF
    Under many conditions, biomolecules and nanoparticles associate by means of attractive bonds, due to hydrophobic attraction. Extracting the microscopic association or dissociation rates from experimental data is complicated by the dissociation events and by the sensitivity of the binding force to temperature (T). Here we introduce a theoretical model that combined with light-scattering experiments allows us to quantify these rates and the reversible binding energy as a function of T. We apply this method to the reversible aggregation of thermoresponsive polystyrene/poly(N-isopropylacrylamide) core-shell nanoparticles, as a model system for biomolecules. We find that the binding energy changes sharply with T, and relate this remarkable switchable behavior to the hydrophobic-hydrophilic transition of the thermosensitive nanoparticles
    • 

    corecore