102 research outputs found

    Gonadal function in pediatric Fanconi anemia patients treated with hematopoietic stem cell transplant

    Get PDF
    Gonadal dysfunction and reduced fertility are clinical manifestations well described in patients with Fanconi anemia (FA) and following hematopoietic stem cell transplantation (HSCT). It is difficult to differentiate gonadal dysfunction from the primary disease itself or from HSCT procedures. Therefore, it is important to manage expectations about gonadal failure and infertility for all patients with FA, regardless of the HSCT status. We performed a retrospective analysis of 98 pediatric patients with FA who were transplanted between July 1990 and June 2020 to evaluate the incidence of gonadal dysfunction in female and male patients with FA. New-onset premature ovarian insufficiency (POI) was diagnosed in a total of 30 (52.6%) patients. Follicle-stimulating hormone and luteinizing hormone levels were increased in patients diagnosed with POI. Anti- Mullerian hormone levels declined in POI patients after HSCT (r2=0.21; P=0.001). Twenty (48.8%) male patients were diagnosed with testicular failure. Follicle-stimulating hormone levels increased after HSCT even in patients without testicular failure (r2=0.17; P=0.005). Inhibin B levels decreased over time after HSCT in patients with testicular failure (r2=0.14; P=0.001). These data indicate brisk decline in already impaired gonadal function in transplanted children with FA

    Oral human papillomavirus is common in individuals with Fanconi anemia

    Get PDF
    Fanconi anemia is a rare genetic disorder resulting in a loss of function of the Fanconi anemia-related DNA repair pathway. Individuals with Fanconi anemia are predisposed to some cancers, including oropharyngeal and gynecologic cancers, with known associations with human papillomavirus (HPV) in the general population. As individuals with Fanconi anemia respond poorly to chemotherapy and radiation, prevention of cancer is critical. METHODS: To determine whether individuals with Fanconi anemia are particularly susceptible to oral HPV infection, we analyzed survey-based risk factor data and tested DNA isolated from oral rinses from 126 individuals with Fanconi anemia and 162 unaffected first-degree family members for 37 HPV types. RESULTS: Fourteen individuals (11.1%) with Fanconi anemia tested positive, significantly more (P = 0.003) than family members (2.5%). While HPV prevalence was even higher for sexually active individuals with Fanconi anemia (17.7% vs. 2.4% in family; P = 0.003), HPV positivity also tended to be higher in the sexually inactive (8.7% in Fanconi anemia vs. 2.9% in siblings). Indeed, having Fanconi anemia increased HPV positivity 4.9-fold (95% CI, 1.6-15.4) considering age and sexual experience, but did not differ by other potential risk factors. CONCLUSION: Our studies suggest that oral HPV is more common in individuals with Fanconi anemia. It will be essential to continue to explore associations between risk factors and immune dysfunction on HPV incidence and persistence over time. IMPACT: HPV vaccination should be emphasized in those with Fanconi anemia as a first step to prevent oropharyngeal cancers, although additional studies are needed to determine whether the level of protection it offers in this population is adequate

    Case Report: Cerebral Revascularization in a Child With Mucopolysaccharidosis Type I

    Get PDF
    Mucopolysaccharidosis (MPS) type I is a rare lysosomal storage disorder caused by an accumulation of glycosaminoglycans (GAGs) resulting in multisystem disease. Neurological morbidity includes hydrocephalus, spinal cord compression, and cognitive decline. While many neurological symptoms have been described, stroke is not a widely-recognized manifestation of MPS I. Accordingly, patients with MPS I are not routinely evaluated for stroke, and there are no guidelines for managing stroke in patients with this disease. We report the case of a child diagnosed with MPS I who presented with overt stroke and repeated neurological symptoms with imaging findings for severe ventriculomegaly, infarction, and bilateral terminal carotid artery stenosis. Direct intracranial pressure evaluation proved negative for hydrocephalus. The patient was subsequently treated with cerebral revascularization and at a 3-year follow-up, the patient reported no further neurological events or new ischemia on cerebral imaging. Cerebral arteriopathy in patients with MPS I may be associated with GAG accumulation within the cerebrovascular system and may predispose patients to recurrent strokes. However, further studies are required to elucidate the etiology of cerebrovascular arteriopathy in the setting of MPS I. Although the natural history of steno-occlusive arteriopathy in patients with MPS I remains unclear, our findings suggest that cerebral revascularization is a safe treatment option that may mitigate the risk of future strokes and should be strongly considered within the overall management guidelines for patients with MPS I

    Human Papillomavirus Oral- and Sero- Positivity in Fanconi Anemia

    Get PDF
    High-risk human papillomavirus (HPV) is prevalent and known to cause 5% of all cancers worldwide. The rare, cancer prone Fanconi anemia (FA) population is characterized by a predisposition to both head and neck squamous cell carcinomas and gynecological cancers, but the role of HPV in these cancers remains unclear. Prompted by a patient-family advocacy organization, oral HPV and HPV serological studies were simultaneously undertaken. Oral DNA samples from 201 individuals with FA, 303 unaffected family members, and 107 unrelated controls were tested for 37 HPV types. Serum samples from 115 individuals with FA and 55 unrelated controls were tested for antibodies against 9 HPV types. Oral HPV prevalence was higher for individuals with FA (20%) versus their parents (13%; p = 0.07), siblings (8%, p = 0.01), and unrelated controls (6%, p ≤ 0.001). A FA diagnosis increased HPV positivity 4.84-fold (95% CI: 1.96-11.93) in adjusted models compared to unrelated controls. Common risk factors associated with HPV in the general population did not predict oral positivity in FA, unlike unrelated controls. Seropositivity and anti-HPV titers did not significantly differ in FA versus unrelated controls regardless of HPV vaccination status. We conclude that individuals with FA are uniquely susceptible to oral HPV independent of conventional risk factors

    Late Effects in Hematopoietic Cell Transplant Recipients with Acquired Severe Aplastic Anemia: A Report from the Late Effects Working Committee of the Center for International Blood and Marrow Transplant Research

    Get PDF
    With improvements in hematopoietic cell transplant (HCT) outcomes for severe aplastic anemia (SAA), there is a growing population of SAA survivors after HCT. However, there is a paucity of information regarding late effects that occur after HCT in SAA survivors. This study describes the malignant and nonmalignant late effects in survivors with SAA after HCT. A descriptive analysis was conducted of 1718 patients post-HCT for acquired SAA between 1995 and 2006 reported to the Center for International Blood and Marrow Transplant Research (CIBMTR). the prevalence and cumulative incidence estimates of late effects are reported for 1-year HCT survivors with SAA. of the HCT recipients, 1176 (68.5%) and 542 (31.5%) patients underwent a matched sibling donor (MSD) or unrelated donor (URD) HCT, respectively. the median age at the time of HCT was 20 years. the median interval from diagnosis to transplantation was 3 months for MSD HCT and 14 months for URD HCT. the median follow-up was 70 months and 67 months for MSD and URD HCT survivors, respectively. Overall survival at I year, 2 years, and 5 years for the entire cohort was 76% (95% confidence interval [CI]: 74-78), 73% (95% CI: 71-75), and 70% (95% CI: 68-72). Among 1-year survivors of MSD HCT, 6% had 1 late effect and 1% had multiple late effects. for 1-year survivors of URD HCT, 13% had 1 late effect and 2% had multiple late effects. Among survivors of MSD HCT, the cumulative incidence estimates of developing late effects were all <3% and did not increase over time. in contrast, for recipients of URD HCT, the cumulative incidence of developing several late effects exceeded 3% by 5 years: gonadal dysfunction 10.5% (95% CI: 7.3-14.3), growth disturbance 7.2% (95% CI: 4.4-10.7), avascular necrosis 6.3% (95% CI: 3.6-9.7), hypothyroidism 5.5% (95% CI: 2.8-9.0), and cataracts 5.1% (95% CI: 2.9-8.0). Our results indicated that all patients undergoing HCT for SAA remain at risk for late effects, must be counseled about, and should be monitored for late effects for the remainder of their lives.Public Health Service Grant from the National Cancer InstituteNational Heart, Lung, and Blood InstituteNational Institute of Allergy and Infectious DiseasesNational Cancer InstituteHealth Resources and Services Administration/Department of Health and Human ServicesOffice of Naval ResearchAllosAmgenAngioblastChildrens Hosp Orange Cty, Dept Hematol, Orange, CA 92668 USACIBMTR Med Coll Wisconsin, Dept Biostat, Milwaukee, WI USAMed Coll Wisconsin, CIBMTR Stat Ctr, Milwaukee, WI 53226 USAKing Faisal Specialist Hosp & Res Ctr, Dept Oncol, Riyadh 11211, Saudi ArabiaNew York Med Coll, Dept Pediat Hematol Oncol & Stem Cell Transplanta, Valhalla, NY 10595 USAStemcyte, Covina, CA USADana Farber Canc Inst, Dept Pediat Oncol, Boston, MA 02115 USAUniv Florida, Dept Hematol Oncol, Gainesville, FL USAPrincess Margaret Hosp, Dept Med, Toronto, ON M4X 1K9, CanadaUniv S Florida, All Childrens Hosp, Dept Pediat Hematol & Oncol, St Petersburg, FL 33701 USAUniv Basel Hosp, Dept Hematol, CH-4031 Basel, SwitzerlandOregon Hlth & Sci Univ, Dept Hematol & Oncol, Portland, OR 97201 USAChildrens Natl Med Ctr, Dept Blood & Marrow Transplantat, Washington, DC 20010 USABaylor Coll Med, Ctr Cell Therapy, Dept Hematol & Oncol, Houston, TX 77030 USAUniv N Carolina Hosp, Dept Pediat, Chapel Hill, NC USAUniv Hosp Case, Med Ctr, Dept Med, Cleveland, OH USAUniv Arkansas Med Sci, Dept Hematol & Oncol, Little Rock, AR 72205 USACincinnati Childrens Hosp Med Ctr, Dept Bone Marrow Transplantat & Immune Deficiency, Cincinnati, OH USATufts Med Ctr, Dept Med & Pediat, Boston, MA USAUniv S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Dept Hematol & Oncol, Tampa, FL 33612 USAFlorida Ctr Cellular Therapy, Dept Med, Orlando, FL USAUniv Fed Parana, Dept Bone Marrow Transplantat, BR-80060000 Curitiba, Parana, BrazilVanderbilt Univ, Med Ctr, Dept Med, Nashville, TN USAInst Oncol Pediat, Dept Pediat, SĂŁo Paulo, BrazilFred Hutchinson Canc Res Ctr, Dept Clin Res & Transplantat, Seattle, WA 98104 USAMt Sinai Med Ctr, Dept Bone Marrow & Stem Cell Transplantat, New York, NY 10029 USAUniv N Carolina Hosp, Dept Hematol & Oncol, Chapel Hill, NC USAUniv Manitoba, CancerCare Manitoba, Dept Manitoba Blood & Marrow Transplant Program, Winnipeg, MB, CanadaKarolinska Univ Hosp, Ctr Allogene Stem Cell Transplantat, Dept Pediat, Stockholm, SwedenLouisiana State Univ, Hlth Sci Ctr, Childrens Hosp, Dept Pediat, New Orleans, LA USADept Natl Marrow Donor Program, Minneapolis, MN USAPublic Health Service Grant from the National Cancer Institute: U24-CA76518National Heart, Lung, and Blood Institute: 5U01HL069294Office of Naval Research: N00014-06-1-0704Office of Naval Research: N00014-08-1-0058HHSH234200637015CWeb of Scienc

    Late effects in hematopoietic cell transplant recipients with acquired severe aplastic anemia: a report from the late effects working committee of the center for international blood and marrow transplant research (CIBMTR)

    Get PDF
    CHOC Children’s Hospital - UC Irvine, Orange, CAMedical College of Wisconsin, Milwaukee, WIMedical College of Wisconsin, Milwaukee, WIKing Faisal Specialist Hospital and Research Center, Riyadh, TX, Saudi ArabiaNew York Medical College, Valhalla, NYStemcyte, Covina, CADana Farber Cancer Institute, Boston, MAUniversity of Florida, Gainesville, FLPrincess Margaret Hospital, Toronto, ON, CanadaAll Children’s Hospital, St. Petersburg, FLUniversity Hospital Basel, Basel, SwitzerlandOregon Health and Science University, Portland, ORChildren’s National Medical Center, Washington, DCBaylor College of Medicine Center for Cell Therapy, Houston, TXUniversity of North Carolina Hospitals, Chapel Hill, NCUniversity Hospitals Case Medical Center, Cleveland, OHUniversity of Arkansas for Medical Sciences, Little Rock, ARCincinnati Children’s Hospital Medical Center, Cincinnati, OHTufts Medical Center, Boston, MAH Lee Moffitt Cancer Center and Research Institute, Tampa, FLFlorida Center for Cellular Therapy, Orlando, FLUniversidade Federal de Parana, Curitiba, BrazilVanderbilt University Medical Center, Nashville, TNInstituto de Oncologia Pediatrica, Sao Paulo, BrazilFred Hutchinson Cancer Research Center, Seattle, WAMount Sinai Medical Center, New York, NYUniversity of North Carolina, Chapel Hill, NCCancerCare Manitoba, University of Manitoba, Winnipeg, CanadaKarolinska University Hospital, Center for Allogeneic Stem Cell Transplantation, Stockholm, SwedenChildrens Hospital LSU Health Sciences Center, New Orleans, LANational Marrow Donor Program, Minneapolis, MNWeb of Scienc
    • …
    corecore