14,915 research outputs found

    Inventory of wetland habitat using remote sensing for the proposed Oahe irrigation unit in eastern South Dakota

    Get PDF
    An inventory of wetlands for the area included in the proposed Oahe irrigation project was conducted to provide supplemental data for the wildlife mitigation plan. Interpretation techniques for inventoring small wetlands in the low relief terrain of the Lake Dakota Plain were documented and data summaries included. The data were stored and tabulated in a computerized spatial data analysis system

    Irrigation management with remote sensing

    Get PDF
    Two visible/near IR hand held radiometers and a hand held thermoradiometer were used along with soil moisture and lysimetric measurements in a study of soil moisture distribution in afalfa fields on the Navajo Indian Irrigation Project near farmington, New Mexico. Radiances from irrigated plots were measured and converted to reflectances. Surface soil water contents (o cm to 4 cm) were determined gravimetrically on samples collected at the same time as the spectral measurements. The relationship between the spectral measurements and the crop coefficient were evaluated to demonstrate potential for using spectral measurement to estimate crop coefficient

    Boundary-detection algorithm for locating edges in digital imagery

    Get PDF
    The author has identified the following significant results. Initial development of a computer program which implements a boundary detection algorithm to detect edges in digital images is described. An evaluation of the boundary detection algorithm was conducted to locate boundaries of lakes from LANDSAT-1 imagery. The accuracy of the boundary detection algorithm was determined by comparing the area within boundaries of lakes located using digitized LANDSAT imagery with the area of the same lakes planimetered from imagery collected from an aircraft platform

    Fission-fragment mass distributions from strongly damped shape evolution

    Full text link
    Random walks on five-dimensional potential-energy surfaces were recently found to yield fission-fragment mass distributions that are in remarkable agreement with experimental data. Within the framework of the Smoluchowski equation of motion, which is appropriate for highly dissipative evolutions, we discuss the physical justification for that treatment and investigate the sensitivity of the resulting mass yields to a variety of model ingredients, including in particular the dimensionality and discretization of the shape space and the structure of the dissipation tensor. The mass yields are found to be relatively robust, suggesting that the simple random walk presents a useful calculational tool. Quantitatively refined results can be obtained by including physically plausible forms of the dissipation, which amounts to simulating the Brownian shape motion in an anisotropic medium.Comment: 14 pages, 11 ps figure

    Generating Spin Currents in Semiconductors with the Spin Hall Effect

    Full text link
    We investigate electrically-induced spin currents generated by the spin Hall effect in GaAs structures that distinguish edge effects from spin transport. Using Kerr rotation microscopy to image the spin polarization, we demonstrate that the observed spin accumulation is due to a transverse bulk electron spin current, which can drive spin polarization nearly 40 microns into a region in which there is minimal electric field. Using a model that incorporates the effects of spin drift, we determine the transverse spin drift velocity from the magnetic field dependence of the spin polarization.Comment: 4 pages, 4 figure

    Program schemes with deep pushdown storage.

    Get PDF
    Inspired by recent work of Meduna on deep pushdown automata, we consider the computational power of a class of basic program schemes, TeX, based around assignments, while-loops and non- deterministic guessing but with access to a deep pushdown stack which, apart from having the usual push and pop instructions, also has deep-push instructions which allow elements to be pushed to stack locations deep within the stack. We syntactically define sub-classes of TeX by restricting the occurrences of pops, pushes and deep-pushes and capture the complexity classes NP and PSPACE. Furthermore, we show that all problems accepted by program schemes of TeX are in EXPTIME

    Soil moisture and evapotranspiration predictions using Skylab data

    Get PDF
    The author has identified the following significant results. Multispectral reflectance and emittance data from the Skylab workshop were evaluated for prediction of evapotranspiration and soil moisture for an irrigated region of southern Texas. Wavelengths greater than 2.1 microns were required to spectrally distinguish between wet and dry fallow surfaces. Thermal data provided a better estimate of soil moisture than did data from the reflective bands. Thermal data were dependent on soil moisture but not on the type of agricultural land use. The emittance map, when used in conjunction with existing models, did provide an estimate of evapotranspiration rates. Surveys of areas of high soil moisture can be accomplished with space altitude thermal data. Thermal data will provide a reliable input into irrigation scheduling

    Room temperature electron spin coherence in telecom-wavelength quaternary quantum wells

    Full text link
    Time-resolved Kerr rotation spectroscopy is used to monitor the room temperature electron spin dynamics of optical telecommunication wavelength AlInGaAs multiple quantum wells lattice-matched to InP. We found that electron spin coherence times and effective g-factors vary as a function of aluminum concentration. The measured electron spin coherence times of these multiple quantum wells, with wavelengths ranging from 1.26 microns to 1.53 microns, reach approximately 100 ps at room temperature, and the measured electron effective g-factors are in the range from -2.3 to -1.1.Comment: 4 pages, 4 figure

    The Library of Babel

    Full text link
    We show that heavy pure states of gravity can appear to be mixed states to almost all probes. Our arguments are made for AdS5\rm{AdS}_5 Schwarzschild black holes using the field theory dual to string theory in such spacetimes. Our results follow from applying information theoretic notions to field theory operators capable of describing very heavy states in gravity. For certain supersymmetric states of the theory, our account is exact: the microstates are described in gravity by a spacetime ``foam'', the precise details of which are invisible to almost all probes.Comment: 7 pages, 1 figure, Essay receiving honorable mention in the 2005 Gravity Research Foundation essay competitio
    • …
    corecore