12 research outputs found
7-Substituted pyrrolo[2,3-d]pyrimidines for the synthesis of new 1-deazapyrimido[1,2,3-cd]purines
Few examples of new heterocyclic 1-deazapyrimido[1,2,3-cd]purine derivatives were synthesized by intramolecular cyclization of methyl 7-(oxiran-2-ylmethyl)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylates. The latter were obtained by iodolactonization of 7-allylpyrrolo[2,3-d]pyrimidine-6-carboxylic acids
Recommended from our members
Express method for isolation of ready-to-use 3D chitin scaffolds from aplysina archeri (aplysineidae: verongiida) demosponge
Sponges are a valuable source of natural compounds and biomaterials for many biotechnological applications. Marine sponges belonging to the order Verongiida are known to contain both chitin and biologically active bromotyrosines. Aplysina archeri (Aplysineidae: Verongiida) is well known to contain bromotyrosines with relevant bioactivity against human and animal diseases. The aim of this study was to develop an express method for the production of naturally prefabricated 3D chitin and bromotyrosine-containing extracts simultaneously. This new method is based on microwave irradiation (MWI) together with stepwise treatment using 1% sodium hydroxide, 20% acetic acid, and 30% hydrogen peroxide. This approach, which takes up to 1 h, made it possible to isolate chitin from the tube-like skeleton of A. archeri and to demonstrate the presence of this biopolymer in this sponge for the first time. Additionally, this procedure does not deacetylate chitin to chitosan and enables the recovery of ready-to-use 3D chitin scaffolds without destruction of the unique tube-like fibrous interconnected structure of the isolated biomaterial. Furthermore, these mechanically stressed fibers still have the capacity for saturation with water, methylene blue dye, crude oil, and blood, which is necessary for the application of such renewable 3D chitinous centimeter-sized scaffolds in diverse technological and biomedical fields. © 2019 by the authors
Recommended from our members
Naturally prefabricated marine biomaterials: Isolation and applications of flat chitinous 3D scaffolds from Ianthella labyrinthus (demospongiae: Verongiida)
Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics. © 2019 by the authors. Licensee MDPI, Basel, Switzerland
Recommended from our members
New Source of 3D Chitin Scaffolds: The Red Sea Demosponge Pseudoceratina arabica (Pseudoceratinidae, Verongiida)
The bioactive bromotyrosine-derived alkaloids and unique morphologically-defined fibrous skeleton of chitin origin have been found recently in marine demosponges of the order Verongiida. The sophisticated three-dimensional (3D) structure of skeletal chitinous scaffolds supported their use in biomedicine, tissue engineering as well as in diverse modern technologies. The goal of this study was the screening of new species of the order Verongiida to find another renewable source of naturally prefabricated 3D chitinous scaffolds. Special attention was paid to demosponge species, which could be farmed on large scale using marine aquaculture methods. In this study, the demosponge Pseudoceratina arabica collected in the coastal waters of the Egyptian Red Sea was examined as a potential source of chitin for the first time. Various bioanalytical tools including scanning electron microscopy (SEM), fluorescence microscopy, FTIR analysis, Calcofluor white staining, electrospray ionization mass spectrometry (ESI-MS), as well as a chitinase digestion assay were successfully used to confirm the discovery of a-chitin within the skeleton of P. arabica. The current finding should make an important contribution to the field of application of this verongiid sponge as a novel renewable source of biologically-active metabolites and chitin, which are important for development of the blue biotechnology especially in marine oriented biomedicine. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
Naturally prefabricated marine biomaterials:Isolation and applications of flat chitinous 3D scaffolds from Ianthella labyrinthus (demospongiae: Verongiida)
Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex\uae. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics
Naturally Prefabricated Marine Biomaterials: Isolation and Applications of Flat Chitinous 3D Scaffolds from (Demospongiae: Verongiida)
Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex. Thus, the natural, unmodified cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics
Express Method for Isolation of Ready-to-Use 3D Chitin Scaffolds from <i>Aplysina archeri</i> (Aplysineidae: Verongiida) Demosponge
Sponges are a valuable source of natural compounds and biomaterials for many biotechnological applications. Marine sponges belonging to the order Verongiida are known to contain both chitin and biologically active bromotyrosines. Aplysina archeri (Aplysineidae: Verongiida) is well known to contain bromotyrosines with relevant bioactivity against human and animal diseases. The aim of this study was to develop an express method for the production of naturally prefabricated 3D chitin and bromotyrosine-containing extracts simultaneously. This new method is based on microwave irradiation (MWI) together with stepwise treatment using 1% sodium hydroxide, 20% acetic acid, and 30% hydrogen peroxide. This approach, which takes up to 1 h, made it possible to isolate chitin from the tube-like skeleton of A. archeri and to demonstrate the presence of this biopolymer in this sponge for the first time. Additionally, this procedure does not deacetylate chitin to chitosan and enables the recovery of ready-to-use 3D chitin scaffolds without destruction of the unique tube-like fibrous interconnected structure of the isolated biomaterial. Furthermore, these mechanically stressed fibers still have the capacity for saturation with water, methylene blue dye, crude oil, and blood, which is necessary for the application of such renewable 3D chitinous centimeter-sized scaffolds in diverse technological and biomedical fields
Express Method for Isolation of Ready-to-Use 3D Chitin Scaffolds from (Aplysineidae: Verongiida) Demosponge
Sponges are a valuable source of natural compounds and biomaterials for many biotechnological applications. Marine sponges belonging to the order Verongiida are known to contain both chitin and biologically active bromotyrosines. (Aplysineidae: Verongiida) is well known to contain bromotyrosines with relevant bioactivity against human and animal diseases. The aim of this study was to develop an express method for the production of naturally prefabricated 3D chitin and bromotyrosine-containing extracts simultaneously. This new method is based on microwave irradiation (MWI) together with stepwise treatment using 1% sodium hydroxide, 20% acetic acid, and 30% hydrogen peroxide. This approach, which takes up to 1 h, made it possible to isolate chitin from the tube-like skeleton of and to demonstrate the presence of this biopolymer in this sponge for the first time. Additionally, this procedure does not deacetylate chitin to chitosan and enables the recovery of ready-to-use 3D chitin scaffolds without destruction of the unique tube-like fibrous interconnected structure of the isolated biomaterial. Furthermore, these mechanically stressed fibers still have the capacity for saturation with water, methylene blue dye, crude oil, and blood, which is necessary for the application of such renewable 3D chitinous centimeter-sized scaffolds in diverse technological and biomedical fields
New Source of 3D Chitin Scaffolds: The Red Sea Demosponge <i>Pseudoceratina arabica</i> (Pseudoceratinidae, Verongiida)
The bioactive bromotyrosine-derived alkaloids and unique morphologically-defined fibrous skeleton of chitin origin have been found recently in marine demosponges of the order Verongiida. The sophisticated three-dimensional (3D) structure of skeletal chitinous scaffolds supported their use in biomedicine, tissue engineering as well as in diverse modern technologies. The goal of this study was the screening of new species of the order Verongiida to find another renewable source of naturally prefabricated 3D chitinous scaffolds. Special attention was paid to demosponge species, which could be farmed on large scale using marine aquaculture methods. In this study, the demosponge Pseudoceratina arabica collected in the coastal waters of the Egyptian Red Sea was examined as a potential source of chitin for the first time. Various bioanalytical tools including scanning electron microscopy (SEM), fluorescence microscopy, FTIR analysis, Calcofluor white staining, electrospray ionization mass spectrometry (ESI-MS), as well as a chitinase digestion assay were successfully used to confirm the discovery of α-chitin within the skeleton of P. arabica. The current finding should make an important contribution to the field of application of this verongiid sponge as a novel renewable source of biologically-active metabolites and chitin, which are important for development of the blue biotechnology especially in marine oriented biomedicine